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We construct global artificial boundary conditions (ABCs) for the numerical sim-
ulation of wave processes on unbounded domains using a special nondeteriorating
algorithm that has been developed previously for the long-term computation of wave-
radiation solutions. The ABCs are obtained directly for the discrete formulation of
the problem; in so doing, neither a rational approximation of “nonreflecting kernels”
nor discretization of the continuous boundary conditions is required. The extent of
temporal nonlocality of the new ABCs appears fixed and limited; in addition, the
ABCs can handle artificial boundaries of irregular shape on regular grids with no
fitting/adaptation needed and no accuracy loss induced. The nondeteriorating al-
gorithm, which is the core of the new ABCs, is inherently three-dimensional, it
guarantees temporally uniform grid convergence of the solution driven by a continu-
ously operating source on arbitrarily long time intervals and provides unimprovable
linear computational complexity with respect to the grid dimension. The algorithm is
based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions
in odd-dimensional spaces. It can, in fact, be built as a modification on top of any
consistent and stable finite-difference scheme, making its grid convergence uniform
in time and at the same time keeping the rate of convergence the same as that of
the unmodified scheme. In this paper, we delineate the construction of the global
lacunae-based ABCs in the framework of a discretized wave equation. The ABCs
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are obtained for the most general formulation of the problem that involves radia-
tion of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering
aircraft). We also present systematic numerical results that corroborate the theoretical
design properties of the ABC algorithm. c© 2001 Elsevier Science

Key Words:artificial boundary conditions; wave propagation; lacunae; nondeteri-
orating method.

1. INTRODUCTION

Numerical simulation of wave phenomena on unbounded domains (e.g., radiation and/or
scattering of acoustic or electromagnetic waves) often encounters the following well-
recognized difficulty. As no computer can either handle infinite arrays of data or perform
infinite numbers of arithmetic operations, the discrete approximation of the problem has to
be made finite (i.e., finite-dimensional). Consequently, the original infinite domain has to
be truncated and special artificial boundary conditions (ABCs) have to be developed as a
closure for the resulting finite formulation.

The literature on the subject of ABCs is very extensive; see, e.g., review papers by Givoli
[1] and Tsynkov [2], as well as another recent review by Hagstrom [3], which is geared
more specifically toward wave propagation problems. In the current study, we focus on
genuinely unsteady (as opposed to time-harmonic) wave phenomena to be computed in the
time domain. For this type of problem, most of the ABC research to date has been done in
the framework of simple approximate local methods based, e.g., on quasi-one-dimensional
characteristics’ decomposition. These methods often appear insufficiently accurate. Some
of the more accurate methods that have recently gained attention are based on the so-called
perfectly matched layers; see the original publications [4–7] and reviews [8, 9]. Unfortu-
nately, as shown in [10, 11], these methods may give rise to instabilities of a particular
kind. The latter typically manifest themselves when integrating over long time intervals and
thus exacerbate even further the well-known problem of accumulation of error in long-term
numerical simulations.

Among other existing unsteady ABC approaches, only a very few methodologies can
guarantee the accuracy that theoretically would not hamper that of the interior approxima-
tion. All of these methodologies are nonlocal—see, e.g., [12–18]—which is characteristic
of highly accurate (ideally, exact) ABCs. The techniques of this group typically involve two
“approximating” steps, which are undertaken consecutively when building the ABCs. The
first step is the replacement of the fully nonlocal in space–time true exact boundary condi-
tions, which are most often written using pseudo-differential operators, with approximate
boundary conditions (still at the continuous level) that would provide for only a limited
extent of nonlocality. More precisely, this step aims at limiting the temporal nonlocality of
the ABCs, which may be prohibitively expensive in computations. This can be achieved,
e.g., by employing a rational approximation of the corresponding symbol (kernel).2 The first
step is then followed by the second step, which is the discretization of the resulting localized
continuous boundary conditions. We note that unless given special thorough attention, the

2 In fact, a wide variety of purely local ABCs (i.e., local in both space and time) can be obtained via rational
approximation of symbols as well. This approach has been known for two decades; see [19–21]. The general trend
is that the more of the nonlocal nature of exact ABCs is compromised, the less accuracy one can expect from the
resulting approximate methodology.
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discretization step may lead to accuracy loss and again cause instability (this pertains to
purely local ABCs as well). We also note that all of these techniques are restricted geomet-
rically to computational domains of a simple regular shape, e.g., those with spherical or
planar boundaries.

Our recent work [22, 23] indicates that the issue of time-dependent ABCs may be closely
related to another problem that has been mentioned before—the accumulation of numerical
error during long runs. This problem has been recognized as an outstanding question in
computational PDEs for many years, since the first systematic convergence studies for
discrete approximations were conducted in the 1950. From the standpoint of practical
computing, deterioration of the solution over long time intervals can be attributed, e.g.,
to the mechanism of either numerical dissipation or dispersion or both. Theoretically, this
phenomenon is conveniently termed as nonuniformity of the grid convergence in time, and
all conventional discrete approximations that are currently in use are known to suffer from
this deficiency.

As our work [22, 23] suggests, the key to resolving the question of long-term error
accumulation may be in precisely following the physical nature of the original problem
when building a numerical algorithm. Namely, it is known that waves in three dimensions
have aft (or trailing) fronts. This is a manifestation of the so-called Huygens’ principle or
more generally, the presence of lacunae in wave-type solutions in odd-dimension spaces.
Using this property, we have been able to develop a modification to any consistent and
stable finite-difference scheme that approximates a Cauchy problem for the wave equation
so as to make its grid convergence uniform in time on arbitrarily long intervals. The uniform
temporal convergence of the algorithm has been proven theoretically along with its optimal
computational complexity (i.e., linear with respect to the grid dimension). The rate of
temporally uniform grid convergence, see [22, 23], remains the same as that of the original
unmodified scheme. These results apply to the general case of moving sources of waves
that operate continuously in time. As an example, we show in [23] that the linearized flow
around a maneuvering aircraft can be interpreted in this framework.

At least as important, the procedure of [22, 23] allows one to replace the original infinite
domain of the initial-value problem by a finite computational domain that would facilitate
the construction of a finite-dimensional discretization. As will be seen from the discussion
in this paper, the latter replacement leads to obtaining highly accurate nonlocal unsteady
ABCs for combined problems that may include complex phenomena on a bounded interior
domain but reduce to the homogeneous wave equation in the far field. Similarly to the case
analyzed in [22, 23] the interior domain may be moving. The ABCs are built directly for
the specific interior approximation used and in this sense can be considered its most natural
extension. We emphasize that they involve neither of the two common approximating steps
(rational approximation of the symbol followed by discretization) that have been mentioned
before in connection to some existing ABC methodologies.

We emphasize that the extent of temporal nonlocality of the unsteady ABCs that are
based on the technique [22, 23] is bounded naturally for all times because of the explicit
use of lacunae. Unlike in many other methods available in the literature, this bound is not
a consequence of any approximation. We should mention though that a similar idea of
naturally restricting the temporal nonlocality of the ABCs by using the Huygens principle
has been proposed previously by Ting and Miksis in [24] and then further developed and
implemented by Givoli and Cohen in [25]. However, the approaches of both [24] and [25]
essentially rely on approximating the Kirchhoff integral by numerical quadratures and then
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coupling the exterior quadrature with the interior solution. (The latter can be obtained, e.g.,
by finite differences or finite elements.) In contradistinction to that, the approach that we
propose is based completely on finite differences, and the notion of the Kirchhoff integral
is needed only in theory to track the aft fronts of the waves; see Section 3. Moreover, the
genuine approach of [24] has, in fact, never been implemented in a practical setting, whereas
the implementation of [25] required introducing additional dissipation into the scheme to
suppress numerical instabilities that may arise otherwise. In contradistinction to that, our
approach is specifically designed to provide long-term numerical stability. Moreover, as our
ABCs are obtained directly for the specific finite-difference scheme, the issue of discretizing
the boundary conditions, which has been shown to cause problems before, simply does not
arise in this framework. Besides, the new ABCs possess full geometric universality, i.e., can
handle any shape of the external artificial boundary with equal ease on a regular Cartesian
grid with no fitting/adaptation required and no accuracy loss caused.

The rest of the paper is organized as follows. In Section 2 we give a concise overview
of the algorithm. In Section 3, we provide a brief outline of the phenomenon of lacunae
in wave radiation solutions and show how one can use those to obtain a nondeteriorating
algorithm for long-term numerical integration of the corresponding problems. In addition to
the theoretical justification, we include in this section several computational demonstrations
of the properties of the aforementioned algorithm. In Section 4, we describe in detail the
construction of the global finite-difference lacunae-based ABCs and briefly comment on
how the proposed construction fits into the general framework of discrete time-dependent
boundary conditions developed by Ryaben’kii in [26]. Section 5 contains an extensive set
of numerical experiments with the new ABCs for the wave equation. The experiments
are conducted for finite-difference schemes of different orders of accuracy, different laws
of motion for the waves’ sources (uniform, as well as nonuniform), and different interior
models that require closure by the homogeneous wave equation in the far field. These
experiments corroborate the theoretical design properties of the ABC algorithm. Section 6
is a summary of conclusions.

2. OVERVIEW

Let S⊂ R3 be a finite fixed domain, and consider the following combined initial-value
problem onR3× [0,+∞) with respect to the unknown functionϕ = ϕ(x, t):

8(x, t, ϕ,∇ϕ, ϕt , . . .) = 0, x ∈ S, t ≥ 0,

ϕt t − c21ϕ = 0, x ∈ R3\S, t ≥ 0, (1)

ϕ(x, 0) = ϕt (x, 0) = 0, x ∈ R3.

Problem (1) represents a typical situation. There is some sufficiently complex process
going on insideS; this process is described by the differential equation8(x, t, ϕ,∇ϕ,

ϕt , . . .) = 0, which may, for example, be nonlinear. In the far field, i.e., outsideS, the
governing equation simplifies and reduces to the standard linear constant–coefficient wave
equation. The initial conditions are assumed homogeneous for simplicity. As the wave
equation is also homogeneous everywhere onR3\S, t ≥ 0, the formulation (1) essentially
means that the waves generated insideSshall be radiated in all directions toward infinity, and
that there will be no incoming waves with respect to the regionS. The objective is to build a
feasible numerical procedure for computing the solution of problem (1). For that, the overall
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infinite domain of the problem,R3, has to be truncated. A natural way of doing that is to try to
replace the entire exterior linear part of the problem by equivalent boundary conditions at∂S,
so that the actual computations can be performed only on a finite domain. The corresponding
boundary conditions are called the ABCs. The ABCs will equivalently substitute for the
wave equation outsideS and as such, to construct them we will not need to know much
about the nature of the problem insideS. One thing, however, is important—we will need
to assume ahead of time that the overall problem (1) is uniquely solvable and well posed.

Let ϕ = ϕ(x, t) be a solution to (1). Introduce an auxiliary functionµ = µ(x), which
should be smooth onR3 and would satisfyµ(x) ≡ 1 forx ∈ R3\Sandµ(x) ≡ 0 forx ∈ Sε ,
whereSε is a smaller domain,x ∈ Sε if and only ifx ∈ Sand dist(x, ∂S) > ε. In other words,
µ is supposed to have a constant value of zero “well inside”S, and a constant value of one
everywhere outsideSand undergo transition from zero to one in a (narrow) region of width
ε next to the boundary∂S from the interior side. Let us now multiplyϕ(x, t) by µ(x) and
apply the linear constant–coefficient wave operator of (1) to the product everywhere on
R3 for all t ’s. We denote the resultg(x, t) ≡ (ϕµ)t t − c21(ϕµ). Obviously,g(x, t) = 0
for x ∈ Sε and anyt , becauseµ = 0 on Sε , and alsog(x, t) = 0 for x ∈ R3\S and anyt ,
becauseµ= 1 onR3\Sand consequently, the functionϕµ coincides there with the solution
ϕ of the homogeneous wave equation. The only region whereg(x, t) may differ from zero
is the transition regionS\Sε .

Because of the unique solvability of the Cauchy problem for the wave equation, one can
easily see that the solution ˜ϕ = ϕ̃(x, t) to the auxiliary problem driven byg(x, t),

ϕ̃t t − c21ϕ̃ = g(x, t), x ∈ R3, t ≥ 0,
(2)

ϕ̃(x, 0) = ϕ̃t (x, 0) = 0, x ∈ R3,

coincides with the solutionϕ = ϕ(x, t) to problem (1) everywhere on the exterior domain
R3\S for all t : ϕ̃(x, t) ≡ ϕ(x, t), x ∈ R3\S. Consequently, if we knew the solution ˜ϕ(x, t)
to problem (2), we could use it to supply the required boundary data, i.e., closure, for the
equation8(x, t, ϕ,∇ϕ, ϕt , . . .) = 0 onS, and as such could obtain the desired ABCs.

Thus, the original problem has been decomposed into a finite-domain interior problem
for the equation8(x, t, ϕ,∇ϕ, ϕt , . . .) = 0 onSonly, which is obviously not complete by
itself, and the auxiliary problem (2) that needs to be solved onR3 to provide the missing
boundary data for the aforementioned interior problem onS. In its own turn, the source term
of the auxiliary problem (2) is calculated through the solution of the interior problem. At
first glance, however, we accomplished nothing by introducing this decomposition, because
the auxiliary problem (2) is still formulated on an unbounded domain and therefore cannot
be used directly for computing the ABCs.

The key difference though is that the auxiliary problem (2) is linear, and has constant
coefficients, throughout the entire space. To solve this problem efficiently, we are going
to use the fact that the waves governed by the linear constant–coefficient wave equation
onR3 have sharp aft fronts (a manifestation of the Huygens’ principle or alternatively, the
presence of lacunae, in the solutions to the wave equation). Assuming that the sourceg(x, t)
in (2) operates continuously in time on a compact domainS, let us partitiong(x, t) into a
collection of elements

g(x, t) =
∞∑
j=0

gj (x, t, T) (3)
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so that∀ j : suppgj (x, t, T) ⊆ S× [( j − 1+ σ j )T, ( j + 1+ σ j )T ]. In other words, every
gj (x, t, T) is supported only on a finite time interval of fixed length 2T , whereT is a
parameter; another parameterσ controls the overlap size of the partition(1− σ)T so
that gj (x, t, T) can be taken to be smooth, which will be important from the standpoint
of consistency of the discrete scheme. Because of the linear superposition principle, the
solutionϕ(x, t) to problem (2) can now be reconstructed as a sum

ϕ(x, t) =
∞∑
j=0

ϕ j (x, t, T), (4)

where eachϕ j (x, t, T) solves the Cauchy problem driven by the correspondinggj (x, t, T)

from (3).
The series (4) that represents the solution to problem (2) is formally infinite. As, however,

we are interested in knowing this solution only onS, it is easy to see that for every given
moment of timet , only a finite fixed number of terms of (4) will contribute to the solution.
Indeed, because of the causality for any givent the contribution of all thosegj that “kick in”
at the moments of time later thant , is obviously zero. In addition to that, the contribution of all
thosegj that are sufficiently far behind in time is also zero. To quantify what “sufficiently far
behind” means, we note that the waves generated insideSby anygj will travel with the speed
c, and as there will be a sharp aft front initiated at the moment whengj ceases to operate, these
waves will leave the domain completely no later than after the time interval(diamS)/c has
elapsed since the termination ofgj . Clearly, the aforementioned time interval determines the
“lifespan” of the waves on the domainSand depends only on the size of the domain and the
speed of wave propagation. Consequently, for a givent , any source elementgj that is retarded
in time to the extent of more than this lifespan will no longer contribute to the solution. As
such, there will only be a finite fixed number of nonzero terms in the series (4) onS for any
givent , and what is most important is that this number will not depend on the actualt .

Moreover, the same argument based on the Huygens principle implies that every com-
ponentϕ j of the overall solution (4) needs to be considered onSduring a finite, fixed time
interval only; this interval is obviously equal to the aforementioned lifespan of the waves on
Splus the duration 2T of the action of the sourcegj itself. Crucial to constructing the ABCs,
this argument also implies that during this interval(diamS)/c+ 2T , the waves generated
by a givengj can travel in space no further away fromS than a certain distance in any
direction. This distance will again be finite and fixed and will be determined only by the
geometry of the problem and the speed of wave propagation. Therefore, we can conclude
that every componentϕ j of the overall solution (4) can be computed on a bounded domain
of a constant size. This size, which is the same for all componentsϕ j , will be larger than
the original size ofS, but it will be fixed from the very beginning and will not increase as
the timet elapses.

In other words, the auxiliary problem (2) can actually be solved on a finite domain,
which means it can be used efficiently to provide the closure for the interior problem8(x,

t, ϕ,∇ϕ, ϕt , . . .) = 0, or in other words, obtain the ABCs on∂S. These ABCs will, generally
speaking, be nonlocal in both space and time. The nonlocality essentially means that the
boundary conditions on∂Scannot be expressed by a simple pointwise formula; they should
rather be regarded as operator relations that incorporate the values of the solution all over the
boundary, and the algorithm proposed in this paper is a way to actually compute the action
of the operator involved. A key advantage of our approach is that the temporal nonlocality
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of the proposed ABCs will be of a “benign” nature because it will not increase as the
time elapses (see below). Moreover, for every given moment of timet the solution of the
auxiliary problem will be composed of a finite fixed number of componentsϕ j , and each
of the latter will need to be considered as a part of the overall solution only during a finite
fixed interval of time. Consequently, when the auxiliary problem is integrated numerically,
the stability constant will depend only on this finite fixed time interval, rather than on the
overall time of integration, which can be arbitrarily large. As such, we conclude that the
numerical integration procedure for problem (2), which is based on the partition (3), (4) and
the Huygens principle argument, will converge uniformly in time as the grid size decreases,
provided that the scheme used for the integration is consistent and stable in the conventional
sense. Therefore, we can expect that the ABCs constructed through the decomposition
of the original problem (1) into the interior part8(x, t, ϕ,∇ϕ, ϕt , . . .) = 0 and auxiliary
problem (2), with subsequent lacunae-based integration of the latter, will have good stability
characteristics. This is indeed corroborated by the numerical experiments of Section 5.

In practice the two problems are, of course, solved concurrently. Both are integrated by
a discrete scheme; one time step of the interior procedure is followed by advancing the
right-hand sideg(x, t) by one more step, and then by making one lacunae-based integration
step of problem (2). Then, the entire cycle repeats itself. We reemphasize that due to the
lacunae the extent of temporal nonlocality of the ABCs appears fixed and limited. Indeed,
only a finite fixed number of partition elementsgj need to be taken into account at every
given moment of time. Moreover, the resulting ABCs appear universal from the standpoint
of geometry. In other words, the grid used for integrating the auxiliary problem (2) can be
regular and shall by no means fit the geometry of the interior domainS.

We will now proceed to describe the algorithms of lacunae-based integration and the
ABCs in detail. In so doing, we will consider a more general case of the moving domainS.

3. LACUNAE AND NONDETERIORATING NUMERICAL INTEGRATION

3.1. Lacunae of the Wave Equation

We consider a Cauchy (initial-value) problem for the three-dimensional wave equation,
x = (x1, x2, x3),

∂2ϕ

∂t2
− c2

(
∂2ϕ

∂x2
1

+ ∂2ϕ

∂x2
2

+ ∂2ϕ

∂x2
3

)
= f (x, t), t ≥ 0, (5a)

ϕ|t=0= ∂ϕ

∂t

∣∣∣∣
t=0

= 0. (5b)

(The limitation of having homogeneous initial conditions (5b) can be alleviated, see [22, 23].)
The problem (5a), (5b) is solved on the domainS(t) ⊂ R3, which has finite diameterd for
all timest ≥ 0; other than that the domainS(t) may travel in space according to an arbi-
trary law of motion except that its maximum speedk is required to be “subsonic,”k < c.
The solutionϕ(x, t) is driven by the continuously operating sourcef (x, t), f (x, 0) = 0,
and we require that∀t > 0: suppf (x, t) ⊆ S(t). In other words, we study the radiation of
waves by a source, which is compactly supported in space for all times. The solution is of
interest for us also on a compact domain, which we callS(t); it fully contains the source
and follows its motion if there is motion. This is a simplified model for many interesting
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physical phenomena that are more complex in their nature. As we shall see, this model is
very useful in constructing the ABCs for a variety of problems.

For every(x, t), the solutionϕ = ϕ(x, t) to problem (5a), (5b) is given by the Kirchhoff
integral

ϕ(x, t) = 1

4πc2

∫∫∫
%≤ct

f (ξ, t − %/c)

%
dξ, (6)

whereξ = (ξ1, ξ2, ξ3), % = |x− ξ| =
√

(x1− ξ1)2+ (x2− ξ2)2+ (x3− ξ3)2, anddξ =
dξ1dξ2dξ3. If we assume for a moment that the right-hand side (RHS)f (x, t) is compactly
supported in space–time on the domainQ ⊂ R3× [0,+∞), then formula (6) immediately
implies that

ϕ(x, t) ≡ 0 for (x, t) ∈
⋂

(ξ,θ)∈Q

{(x, t) | |x− ξ| < c(t − θ), t > θ}. (7)

The region of space–time defined by formula (7) is called lacuna of the solutionϕ = ϕ(x, t).
This region is obviously obtained as the intersection of characteristic cones of Eq. (5a) once
the vertex of the cone sweeps the support of the RHS; suppf ⊆ Q. From the standpoint
of physics, the lacuna represents that part of space–time where the waves generated by the
sourcesf , suppf ⊆ Q, have already passed and the solution has become zero again. (Some-
times, the name “secondary lacuna” is used to distinguish it from the primary lacuna, which
is the area where the waves have not reached yet.) The phenomenon of lacunae is inherently
three-dimensional. The interior surface of the lacuna represents the trajectory of aft (trail-
ing) fronts of the waves. The presence of aft fronts in odd-dimension spaces is known as
the Huygens principle, as opposed to the so-called wave diffusion, which takes place in
even-dimension spaces.

3.2. Computation with a Compactly Supported Source

Assume now that the moment of inception of the sourcef (x, t) is t0 (in particular it may be
t0 = 0); at this moment the domainS(t0) of the RHSf (x, t) occupies a position in space that
is schematically represented by the interval [A1, A2] of sized on Fig. 1.3 Assume also that
by the timet1 > t0 this source ceases to operate, which makes the RHS of Eq. (5a) compactly
supported in both space and time; suppf ⊆ Q = {(x, t) | x ∈ S(t), t0 < t < t1}. Clearly,
by the timet1 the domainS(t1) can be displaced from its initial location no further than
the distancek(t1− t0) is each direction, which is schematically represented in Fig. 1 by
the boundaries of the interval [B1, B2] of sized + 2k(t1− t0). Starting fromt = t1 no new
waves will be generated, and those generated prior tot1 will continue traveling in space and
thus will eventually leave the domainS(t) completely, because their speed of propagation
c is higher than that of the domain,k. The momentt2 when this happens, i.e., when the
solutionϕ(x, t) again becomes zero onS(t), is easy to calculate; see Fig. 1. By this moment,
the domainS(t2) can travel no further than the interval [C1, C2] of sized + 2k(t2− t0), and
we need to assume that the aft fronts will also be exactly at the boundaries of this interval

3 Throughout this section we will be using schematic one-dimensional illustrations always keeping in mind,
however, that the actual problem is three-dimensional.
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FIG. 1. One-dimensional schematic representation for the fronts of the waves generated by a compactly
supported source.

at t = t2, which immediately yields

ϕ(x, t) ≡ 0, for x ∈ S(t), t ≥ t2 ≡ t0+ d + (t1− t0)(c+ k)

c− k
. (8)

Estimate (8) is fundamental. It essentially says that once we need to calculate the solu-
tion ϕ(x, t) on S(t) and the sources are compactly supported in space–time, suppf ⊆
Q{(x, t) | x ∈ S(t), t0 < t < t1}, then we may stop the calculation att = t2 because af-
terward the solution onS(t) will be zero anyway. This means, in particular, that if the
solution is calculated using a discrete method, e.g., a finite-difference scheme, then no
new error will be accumulated aftert = t2. The constants in both consistency and stability
estimates of the scheme (see [22, 23] and below for detail) will now depend on the time
intervalTint = d+ (t1− t0)(c+ k)

c− k rather than final timeTfinal, which for the case of a compactly
supported RHS simply becomes immaterial.

Besides, once we stop the calculation att2 = t0+ Tint, we realize that during the time
intervalTint that has passed since the beginningt = t0, no waves could have traveled in space
further than the boundaries of the interval [D1, D2] of sized + 2cTint; see Fig. 1. Beyond
this region the solution is zero because this is the area of the primary lacuna. Therefore,
even though the original problem was formulated on an infinite domain, we can, in fact,
calculate the solution on a finite domain [D1, D2] of size d + 2cTint with zero external
boundary conditions (of the Dirichlet type).

The transition from the infinite domain to a finite domain does not, obviously, come “at
no charge.” One can rather say that it comes at the expense of having the computational
domain [D1, D2] larger than the actual domain of interestS(t). However, the size of the
“redundant” portion of [D1, D2] can be further reduced by observing that all we have to
do is make sure that byt = t2, i.e., by the moment the last waves generated byf (x, t),
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supp f ⊆ Q, leaveS(t), no new waves can enterS(t). This can be guaranteed either as
indicated previously, by placing the outer boundary sufficiently far away so that no waves
from f (x, t), suppf ⊆ Q, can even reach it untilt = t2 = t0+ Tint or alternatively, by
placing it closer and thus allowing for reflections, but still not too close so that no reflected
waves can come back, i.e., reachS(t), by t = t2. The size of the new, smaller, computational
domain [E1, E2] with reflecting outer boundary, see Fig. 1, can be estimated easily. The
minimum sizeZ, see Fig. 1, is found by requiring that the reflected waves, which travel
with the same speedc but in the opposite direction, reach the boundary of [C1, C2], i.e., the
utmost possible location ofS(t2), by the exact same moment of timet = t2 when the aft
fronts leaveS(t). This immediately yields

Z = d + (k+ c)Tint. (9)

By comparing the value ofZ from (9) with the size of [D1, D2], which is d + 2cTint, we
conclude that the extra size of the computational domain beyondd can be reduced by up to
a factor of 2 (whenk = 0) in each coordinate direction.

We also note that in fact any well-posed boundary condition can be specified at the reflect-
ing outer boundary of [E1, E2]. The reason is that this boundary is intentionally positioned
so that the reflections are not going to have any effect on the solution insideS(t) anyway.
A particularly convenient way to treat the boundary of [E1, E2] will be to set the periodic
boundary conditions there. In so doing the three-dimensional rectangular domain becomes
a three-dimensional toroidal surface (the opposite faces of the rectangle are identified with
one another) and we only have to keep in mind that the reflected waves will now need to be
interpreted as those that leave the domain on one side and enter it from the opposite side.
This new interpretation obviously brings no change to the foregoing considerations that led
to the size estimate (9). However, for the case of a continuously operating traveling source
that we analyze below, periodicity implies that the motion of the source can also be formally
considered on the toroidal surface, which makes the computational setup much simpler.

3.3. Computation with a Continuously Operating Source

Both foregoing observations—finite time intervalTint and finite spatial domain [E1, E2]
needed for calculating the solution driven by the sourcesf (x, t): supp f ⊆ Q = {(x, t) |
x ∈ S(t), t0 < t < t1}, on the domainS(t)—are crucial for the original case of a contin-
uously operating sourcef (x, t): supp f ⊆ {(x, t) | x ∈ S(t), t ≥ 0}. In this case we first
take a parameterT > 0 and introduce a smooth, even, compactly supported function2(t),
t ∈ R, of a “hat” type,

2(t) ≡ 0, |t | ≥ T,

2(t) = 2(−t),

2(t) ≡ 1, t ∈ [−σ T, σ T ], 0≤ σ < 1, (10)

2

(
1+ σ

2
T + t

)
= 1−2

(
1+ σ

2
T − t

)
, t ∈ [σ T, T ],

which obviously generates a partition of unity,

1≡
∞∑
j=0

2(t − (1+ σ)T j), t ≥ 0,
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with the overlap size(1− σ)T . Then, we represent the right-hand sidef (x, t) of Eq. (5a)
in the form

f (x, t) = f (x, t)
∞∑
j=0

2(t − (1+ σ)T j)

=
∞∑
j=0

2(t − (1+ σ)T j) f (x, t) =
∞∑
j=0

f j (x, t, T). (11)

Clearly, for eachf j (x, t, T) ≡ 2(t − (1+ σ)T j) f (x, t), j = 0, 1, . . . , we have

suppf j (x, t, T) ⊆ {(x, t) | x ∈ S(t), ( j − 1+ σ j )T ≤ t ≤ ( j + 1+ σ j )T}. (12)

Due to the linear superposition, the overall solutionϕ(x, t) of Eq. (5a) will be given by the
sum of individual contributions fromf j (x, t, T), j = 0, 1, . . . ,

ϕ(x, t) =
∞∑
j=0

ϕ j (x, t, T), (13)

where each contributionϕ j (x, t, T) solves the subproblem

∂2ϕ j

∂t2
− c2

(
∂2ϕ j

∂x2
1

+ ∂2ϕ j

∂x2
2

+ ∂2ϕ j

∂x2
3

)
= f j (x, t, T),

(14)

ϕ j |t=( j−1+σ j )T = ∂ϕ j

∂t

∣∣∣∣
t=( j−1+σ j )T

= 0, j = 0, 1, 2, . . . .

Notice that eachϕ j (x, t, T), j = 0, 1, . . . , can be calculated absolutely independently of the
others and that the corresponding source termf j (x, t, T) is a function compactly supported
in both space and time; see (12). Consequently, according to (8), if we interprett0 and
t1 as( j − 1+ σ j )T and( j + 1+ σ j )T , respectively (see Fig. 1), then we can conclude
that everyϕ j (x, t, T) of (13) needs to be calculated only during a finite interval of time
Tint = d+ 2T(c+ k)

c− k . It is important to realize that this interval does not depend on the actual
moment of timet .

Moreover, even though the series (13) is formally infinite, it is easy to see that for any
t > 0,x ∈ S(t), it contains only a finite fixed number of nonzero terms. First of all, because
of the causality,ϕ j (x, t, T) = 0 for x ∈ S(t) if t < ( j − 1+ σ j )T . In other words, for a
given moment of timet , the contribution of all thosef j (x, t, T) that are active only at
subsequent moments of time is obviously zero. A somewhat less trivial observation is that
because of the lacunae the contribution of the “sufficiently retarded” termsf j (x, t, T) to the
overall solution at a given time levelt will be zero as well. More precisely,ϕ j (x, t, T) = 0
for x ∈ S(t) if ( j − 1+ σ j )T < t − Tint. This follows immediately from (8) assuming that
t0 = ( j − 1+ σ j )T andt1 = ( j + 1+ σ j )T . Consequently, instead of (13) we can write

ϕ(x, t) =
p2∑

j=p1

ϕ j (x, t, T), x ∈ S(t), (15)

wherep1 = [ 1
1+ σ

( t − Tint
T + 1)], p2 = [ 1

1+ σ
( t

T + 1)], and [· ] stands for the integer part. The
expressions forp1 and p2 indicate that we will always have eitherp1 = p2− [ Tint

(1+ σ)T ] or
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p1 = p2− [ Tint
(1+ σ)T ] − 1. Therefore, the number of termsp = p2− (p1− 1) in the sum

(15) will never exceed [ Tint
(1+ σ)T ] + 2. AsTint does not depend ont we conclude that neither

does the foregoing upper bound forp. As such, the number of terms in the sum (15) can
always be considered finite and fixed. Altogether we obtain that∀t > 0 the solutionϕ(x, t),
x ∈ S(t), is composed of a finite nonincreasing numberp or additive terms, and each of the
latter needs to be taken into account only during a finite nonincreasing interval of timeTint.

From the perspective of numerical computation, the latter consideration translates into
temporally uniform grid convergence of the discrete algorithm. Indeed, assume that we
are integrating Eq. (5a) by means of a finite-difference scheme with the order of accuracy
O(hα), whereh is a general notion for the grid size andα > 0. Then, the discrete solution
ϕ(h)(x, t) converges to the continuous solutionϕ(x, t) as the grid size decreases,∥∥ϕ(h)(x, t)− ϕ(x, t)

∥∥ ≤ K · hα, t ∈ [0, Tfinal], (16)

whereTfinal is the total integration time. Inequality (16) is a generic convergence estimate; it
holds provided that the RHSf (x, t) of Eq. (5a) is sufficiently smooth. A detailed discussion
on the smoothness requirements forf (x, t) can be found in [23], along with the specific
consistency/stability/convergence estimates in the norms that would take into account a
particular smoothness level.4

The constantK in inequality (16) does not depend on the grid. It is, however, known
to depend on the actual RHSf (x, t), as well as the final timeTfinal: K = K ( f, Tfinal). The
dependency ofK onTfinal is typically a growth, and sometimes this growth may be rapid. This
means that even though on any fixed interval [0, Tfinal] the scheme converges ash −→ 0;
to obtain the same level of accuracy on a larger [0, Tfinal] one may need to take a finer
overall grid ahead of time. Thus, the convergence appears temporally nonuniform. On the
language of practical computing, this phenomenon can be interpreted as the accumulation
of numerical error over long runs. This issue has been long acknowledged in the literature
as unresolved.

The situation changes dramatically if, instead of the straightforward time-dependent inte-
gration, we first use the foregoing lacunae-based representation (15) of the solutionϕ(x, t).
In so doing, for eachj = p1, . . . , p2, we still integrate the corresponding subproblem (14)
using the same finite-difference scheme as before. However, the convergence estimate for
the scheme then becomes∥∥ϕ(h)

j (x, t, T)− ϕ j (x, t, T)
∥∥ ≤ K j · hα,

x ∈ S(t), t ∈ [( j − 1+ σ j )T, ( j − 1+ σ j )T + Tint].
(17)

A very important circumstance is that unlikeK in estimate (16), the constantK j in (17)
for each j depends onTint rather thanTfinal: K j = K j ( f j , Tint). Keeping in mind that each
ϕ

(h)
j (x, t, T) can be computed independently of the others, and using linear superposition

(formula (14)), we then easily obtain instead of (16)

∥∥ϕ(h)(x, t)− ϕ(x, t)
∥∥ ≤ p · K̃ · hα, x ∈ S(t), t ≥ 0, (18)

4 Smoothness of the source terms will also be important in constructing the lacunae-based ABCs; see Sections 4
and 5.
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whereK̃ = K̃ ( f, Tint). Note thatp is fixed and does not increase witht , andK̃ now depends
on Tint rather thanTfinal, whereTint is also fixed and does not increase witht . Therefore,
estimate (18) implies temporally uniform grid convergence of the discrete lacunae-based
algorithm on arbitrarily long time intervals or in other words, fort ≥ 0. A detailed formal
proof of this result that, again, involves specific norms, can be found in [23]. Here we
only need to add that for each inequality (17) to hold, the correspondingf j (x, t, T), j =
p1, . . . , p2, has to possess the same regularity as that required for the original scheme to
converge. This explains why choosing the partition (11) smooth with overlaps was very
important.

From the standpoint of practical computing, temporally uniform grid convergence im-
plies that the numerical error will not get accumulated beyond some predetermined bound
for as long as the computation needs to be performed, and once the grid is refined the
aforementioned bound will also drop in accordance with the specific rateO(hα). This is
clear because when the calculation is stopped for a given termϕ

(h)
j (x, t, T) after the interval

Tint has elapsed, the error will not be accumulated any further, and the number of termsp
that need to be taken into account is fixed and nonincreasing. Thus, we have obtained a
nondeteriorating numerical algorithm for integration of the wave equation over arbitrarily
long times. Let us emphasize that it can be built as a modification of any consistent and
stable finite-difference scheme, and that it preserves the original rate of convergence of the
scheme while making the convergence uniform in time.

Besides, let us assume, for example, that the original finite-difference scheme has linear
computational complexity with respect to the grid dimension, which is typical for explicit
schemes. Then, it is easy to see that the modified lacunae-based algorithm will also have lin-
ear computational complexity with respect to the grid dimension. Indeed, this immediately
follows from the fact that each termϕ(h)

j (x, t, T) is computed using the original scheme on
a compact domain of sizeZ (see Fig. 1) during a finite fixed interval of timeTint, and the
number of termsp is, again, fixed and nonincreasing. We should note that for the type of
problems that we are studying linear complexity with respect to the grid is, in fact, optimal,
i.e., unimprovable.

3.4. Computation Using Continuous Time Marching

The following, and last, step in building the lacunae-based algorithm for long-term nu-
merical integration of the wave equation is to realize that for implementing formula (15)
we do not necessarily need to compute each termϕ j (x, t, T) independent of the others.
Instead, we can implement the algorithm in a way similar to the standard time marching
by means of a finite-difference scheme. For that, we will need to use the aforementioned
periodic boundary conditions on the outer boundaries of the auxiliary domain [E1, E2]; see
the end of Section 3.2 and Fig. 1.

The first key observation that we make here is that once the motion of the wave sources, as
well as the propagation of waves themselves, is considered on a three-dimensional toroidal
surface, rather than on the genuineR3, then for every portion of the RHSf j (x, t, T) it does
not really matter where on the period this source is located, or where it starts its motion
from, at t0 = ( j − 1+ σ j )T . It does not have to be exactly “in the middle” as shown in
Fig. 1, because all locations on the period (i.e., toroidal surface) are equivalent. All we
have to worry about is that by the timet2 = ( j − 1+ σ j )T + Tint the waves generated
by f j (x, t, T), see (12), will have left the domainS(t), and that no waves could have
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reentered this domain during [t0, t2]. And this will be exactly the case because the size
Z = d + (k+ c)Tint, see (9), has been chosen sufficiently large to provide for that. Since
we always assume (for simplicity) that the periodZ is the same in all coordinate direc-
tions, then we only need to formally considerf j (x̃, t, T) instead off j (x, t, T) and accord-
ingly, ϕ j (x̃, t, T) instead ofϕ j (x, t, T), wherex̃ = (x̃1, x̃2, x̃3), and x̃i = xi − [ xi

Z ]Z, i =
1, 2, 3.

Next, we shall analyze formula (15) from a slightly different point of view. To begin
with, we notice that in the initial stage of computation, i.e., whent is small, the lower
summation limitp1 may turn out negative. Basically, it does not create any inconsistency
and does not cause any problem becausef (x, t) = 0 for t < 0 anyway. In fact, we can
simply disregard all negativej ’s in the sum (15) for smallt ’s and initially consider the
summation

∑p2
j=0 ϕ j (x, t, T) instead of (15). “Initially” here means till the actual expres-

sion p1 = [ 1
1+ σ

( t − Tint
T + 1)] becomes positive. It is easy to see that the computation in

this initial stage is equivalent to the conventional time marching of the wave equation
(5a) on the domain [E1, E2] of size Z (see Fig. 1) with periodic boundary conditions.
Indeed, all we do here is simply take into account one component of the sourcef j af-
ter another. Due to linear superposition, this amounts to the continuous integration of the
wave equation driven byf =∑p2

j=0 f j from t = 0 till the actual timet . We also note
that the duration of the initial stage is, obviously,Tint. And the periodZ, see (9), has
been chosen sufficiently large so that for the time interval of lengthTint there will be no
difference in the domainS(t) between the solutionϕ(x, t) computed in the periodic set-
ting and the solution that one could have possibly computed with no periodization (see
Section 3.2).

As soon as the time intervalTint = d+ 2T(c+ k)

c− k has elapsed since the inception moment
t = 0, the computation enters its regular (as opposed to initial) stage. This regular stage,
which can, in fact, be continued for as long as necessary, is characterized by the positive
values ofp1 (the first positive value is obviouslyp1 = 1) and finite nongrowing number
p = p2− (p1− 1) of terms in the sum (15).

On the regular stage of the algorithm, we continue marching Eq. (5a) with periodic
boundary conditions in space. Obviously, as the timet elapses bothp1 and p2 in formula
(15) increase. The increase ofp1 and p2 is almost synchronous. Namely, as soon ast
reaches the value( j − 1+ σ j )T for a particular integerj , a new termϕ j gets included in
the sum (15); i.e., the upper summation boundp2 changes from its previous valuej − 1 to
the new valuej . Similarly, as soon ast reaches the value( j − 1+ σ j )T + Tint for a given
j , the termϕ j drops from the sum (15); i.e., the lower summation bound changes from
its previous valuej to the new valuej + 1. As mentioned in Section 3.3, in so doing the
variation of the difference betweenp2 and p1 never exceeds one. Moreover, the temporal
interval that precedes the actual momentt and is taken into consideration by formula (15)
is againTint. Consequently, we can still compute everything in the periodic framework,
because the periodZ (see (9)) is sufficiently large to accommodate the extent of retardation
Tint, and as also mentioned it does not matter where in the period the computation of every
given term starts.

From the standpoint of implementation, when the upper boundp2 increases by one
at t = ( j − 1+ σ j )T nothing special needs to be done. If we simply continue marching
Eq. (5a) in the aforementioned periodic framework, then we will automatically start taking
into account the new component of the RHSf j after t = ( j − 1+ σ j )T . The situation
with the lower boundp1 is somewhat different. Once it has increased by one (fromj to
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j + 1) att = ( j − 1+ σ j )T + Tint, the termϕ j no longer needs to be included in the sum
(15). However, in contradistinction to the case in Section 3.3 where allϕ j were supposed
to be computed independently of one another, here we cannot just stop the computation
of a givenϕ j at t = ( j − 1+ σ j )T + Tint and subsequently say thatϕ j (x, t, T) = 0 for
x ∈ S(t) and fort ≥ ( j − 1+ σ j )T + Tint. Indeed, the time marching of Eq. (5a) implies
that all fragments of the solutionϕ j (x, t, T) are calculated together as a sum and cannot be
explicitly distinguished. On the other hand, if we do nothing att = ( j − 1+ σ j )T + Tint

and continue with the time marching, i.e., if we do not discontinue the computation of
ϕ j (x, t, T) att = ( j − 1+ σ j )T + Tint and leave this term in the solutionϕ(x, t), then right
after this moment of time the first waves generated byf j at t = ( j − 1+ σ j )T will start
reentering the domainS(t) having traveled all the way across the auxiliary domain [E1, E2].
In other words, in the framework of the continuous time marching with periodic boundary
conditions, the termϕ j (x, t, T) cannot be left in the solution as it will “contaminate” the
results onS(t).

To avoid the aforementioned contamination, i.e., to prevent the reentry of waves into
S(t), each termϕ j (x, t, T) needs to be eliminated from the overall solution on the auxiliary
domain [E1, E2] when the extent of its retardation (counted from inception) becomes exactly
Tint. For a given j the proper moment of time for elimination ofϕ j (x, t, T) is t = ( j −
1+ σ j )T + Tint. Once we take outϕ j (x, t, T) at t = ( j − 1+ σ j )T + Tint, this term may
obviously be considered zero everywhere on [E1, E2] for all subsequent moments as well. To
take out the termϕ j (x, t, T) we need to interrupt the time marching att = ( j − 1+ σ j )T +
Tint, then go back to the inception moment off j (x, t, T), which ist = ( j − 1+ σ j )T , and
independently integrate problem (14) for a particularj on [E1, E2] from t0 = ( j − 1+
σ j )T to t2 = ( j − 1+ σ j )T + Tint. The result should then be subtracted from the time-
marching solution att = t2 in the correct sense; i.e., bothϕ and ∂ϕ

∂t (rather their discrete
counterparts) should be affected. Alternatively, we may notice that when problem (14) is
integrated fromt0 = ( j − 1+ σ j )T till t2 = ( j − 1+ σ j )T + Tint, the wave equation will,
in fact, be homogeneous on a substantial portion of this time interval becausef j (x, t, T) = 0
for t > t1 = ( j + 1+ σ j )T . Consequently, instead of marching Eq. (14) over the entire
time interval of lengthTint, we may actually march it only fromt0 = ( j − 1+ σ j )T till
t1 = ( j + 1+ σ j )T , then take Fourier transform of the discrete solution and advance it
till t2 = ( j − 1+ σ j )T + Tint by raising the corresponding amplification factors to the
appropriate power. Numerically, this approach appears much cheaper, especially if it relies
on highly efficient fast Fourier transform (FFT) subroutines.

The new version of the lacunae-based algorithm has obviously been designed to exactly
reproduce the solution obtained with the original version in Section 3.3. The only difference
is in the method of computation: Continuous time marching in the periodic setup with cyclic
subtractions of the retarded contributions versus separate computation of partial solutions
driven by different components of the RHS. Consequently, the new version will possess
the same properties as the original version. Foremost, it will provide for the temporally
uniform grid convergence. Besides, it will obviously have linear computational complexity
with respect to the grid dimension. (The cost of the FFT-based evolution in time distributed
over the corresponding number of time steps is even less than linear if calculated per time
step.) Finally, the algorithm will be universal in the sense that one will be able to build
it as a modification of any consistent and stable finite-difference scheme. It will preserve
the convergence rate of the original scheme while making the convergence uniform in
time.
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3.5. Numerical Demonstrations

To actually demonstrate that the lacunae-based algorithm is an appropriate procedure
that does deliver according to its theoretical design properties, we present some numerical
results for the wave equation.

3.5.1. Continuous Formulation of the Problem

For our simulations, we assume axial symmetry and employ the(r, z) cylindrical co-
ordinates to account for the three-dimensional effects using two-dimensional geometry.
Accordingly, Eq. (5a) that we will be solving becomes

∂2ϕ

∂t2
− c2

(
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ ∂2ϕ

∂z2

)
= f (r, z, t), t ≥ 0. (19a)

The solutionϕ to Eq. (19a), as well as the RHSf , are functions ofr , z, andt . The initial
conditions for Eq. (19a) remain homogeneous as before (see (5b)):

ϕ(r, z, t)|t=0 = 0,
∂ϕ

∂t
(r, z, t)

∣∣∣∣
t=0

= 0. (19b)

The actual domain of interestS(t), on which we will need to compute the solution to
the initial-value problem (19a), (19b), is a sphere of diameterd. The center of the sphere
is located on thez-axis of the cylindrical coordinate system (i.e., atr = 0). This center
(along with the entireS(t), of course) is allowed to move along thez-axis, which still keeps
the axial symmetry intact. The speed of this motion should always be “subsonic,”k < c,
which conforms to one of the key requirements for building the lacunae-based algorithm
(see Section 3.2). The actual values of the parameters that we chose ared = 1.8, c = 1,
k = const= 0.2; the last means that the center of the sphereS(t) performs a straightforward
uniform motion in the positivez-direction.

The larger auxiliary computational domain (a counterpart to the interval [E1, E2] shown
in Fig. 1) is a rectangle [0, R] × [−Z/2, Z/2] of variables(r, z), with the actual sizesR= π

and Z = 2π . The boundary conditions are periodic with the periodZ in the z-direction,
and zero Dirichlet atr = R:

ϕ(r, z± Z, t) = ϕ(r, z, t),
(20)

ϕ(R, z, t) = 0.

We reiterate that boundary conditions (20) are needed only for the auxiliary problem, on the
domainS(t) we will still be calculating the solution to the Cauchy problem (19a), (19b).
The mathematical formulation of the problem obviously requires no boundary condition at
r = 0. However, for the purpose of subsequently building a discrete scheme (see below)
we notice that the natural assumption ofϕ(r, z, t) being a bounded smooth function, along
with the axial symmetry, immediately implies that∂ϕ

∂r |r=0 = 0. Consequently, the Taylor
expansion forϕ nearr = 0 yields

ϕ(r, ·) = ϕ(0, ·)+ 1

2

∂2ϕ

∂r 2

∣∣∣∣
r=0

· r 2+O(r 3),
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which means that

∂ϕ

∂r
= ∂2ϕ

∂r 2

∣∣∣∣
r=0

· r +O(r 2).

Substituting the latter expression into (19a) and considering the limitr → 0, we obtain that
on thez-axis, i.e., atr = 0, Eq. (19a) reduces to

∂2ϕ

∂t2
− c2

(
2
∂2ϕ

∂r 2
+ ∂2ϕ

∂z2

)
= f (r, z, t), r = 0, t ≥ 0. (21)

3.5.2. Exact Solution

To assess the quality of our numerical method we need to build a reference exact solution
to problem (19a), (19b). This solution is obtained using the Lorentz transform:

θ = 1√
1− k2/c2

· t − k/c√
1− k2/c2

· z

c
,

(22)

ζ = − k/c√
1− k2/c2

· ct + 1√
1− k2/c2

· z.

Transformation (22) introduces the new coordinate system(r, ζ, θ). The origin of this new
coordinate system coincides with the center of the sphereS(t) and moves with the speed
k along thez-axis of the original coordinate system. In other words, at every givent it
is positioned atz= kt in the original frame of reference. In implementing transformation
(22), we will always need to assume thatk = const. andk < c, as has also been suggested
in Section 3.2. Specific parameters that we have selected in Section 3.5.1 conform to these
assumptions.

The key property of the Lorentz’ transform (22) is that it does not change the form of
the wave equation (5a) (and consequently, (19a) and (21)); see, e.g., [27]. As such, let us
introduce an arbitrary function of timeχ = χ(t), χ(t) = 0 for t ≤ 0, that is also smooth
∀t ∈ (−∞,+∞). Next, we defineρ2 = r 2+ ζ 2, and then

ψ(r, ζ, θ) = χ
(
θ − ρ

c

)
ρ

(23a)

becomes a solution to the wave equation in the new coordinates(r, ζ, θ). Solution (23a) is
driven by a pointδ-type source, which is located at the origin{r = 0, ζ = 0} of the new
coordinate system and modulated in time by the functionχ(θ). Asχ ′(0) = 0, this solution
also satisfies the homogeneous initial conditions. Consequently, the function

ψ(r, z, t) = χ
(
θ(z, t)− ρ(r,z,t)

c

)
ρ(r, z, t)

(23b)

obtained by substituting (22) into (23a) is a solution to Eq. (19a) with the RHSf (r, z, t) =
χ(t) · δ(r, z− kt). In other words,ψ(r, z, t) of (23b) is a solution to the wave equation
excited by aδ-source that performs a straightforward uniform motion and is modulated in
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time by a given smooth function. Solution (23b) also satisfies homogeneous initial conditions
(19b). From the standpoint of physics, solution (23b) can be characterized as radiation of
spherical waves by a moving point source.

Solution (23b) is obviously singular. To use it for testing the numerical algorithm we
need to remove the singularity. For that, let us definer̃ 2 = r 2+ (z− kt)2 and introduce the
function Q = Q(r̃ ), r̃ ≥ 0, such thatQ(0) = 0, Q(r̃ ) ≡ 1 for r̃ ≥ κd/2, whereκ < 1 is
a parameter, and alsod

mQ(0)

dtm = dmQ(κd/2)

dtm = 0 for m= 1, 2, . . . till at leastm= 4. Then, it
is easy to see that the functionϕ(r, z, t) = ψ(r, z, t) · Q(r̃ ) is regular (i.e., continuous and
bounded) everywhere. Moreover, it is easy to verify by direct differentiation that the same
is true for the function

f (r, z, t)
def= hϕ(r, z, t) ≡ h(ψ(r, z, t) · Q(r̃ )), (24)

whereh denotes the wave operator, i.e., the left-hand side of Eq. (19a). We will usef (r, z, t)
defined by (24) as the source function for Eq. (19a). Clearly,f (r, z, t) may, generally
speaking, differ from zero only on the ball of a smaller diameterκd concentric withS(t).
Everywhere else, i.e., for̃r > κd/2, f (r, z, t) = 0.

For the numerical experiments in this section, we chose the following specific parameters
and functions:κ = 0.8,χ(t) = (1+ 1

4 sint)P(1− t
2π

), whereP(t) ≡ 1 for t ≤ 0, P(t) =
0 for t ≥ 1, and on the interval [0, 1] P(t) is a polynomial of degree 9 such thatP(1/2+ t) =
1− P(1/2− t), andP′(0) = P′′(0) = P′′′(0) = P(IV)(0) = 0. Obviously, this polynomial
is uniquely defined and contains only odd powers oft . In so doing, the overall function
P(t) has four continuous derivatives∀t ∈ (−∞,+∞). The functionQ(r̃ ) is defined with
the help of the same ninth-degree polynomial; namely,Q(r̃ ) = 1− P( 2r̃

κd ), r̃ ≥ 0. We
do not present here the actual expression forf (r, z, t) of (24) that corresponds to the
selectedχ(t) andQ(r̃ ) because it is cumbersome; the computation off (r, z, t) is, however,
straightforward.

Obviously, the exact solution to problem (19a), (19b) driven by the RHSf (r, z, t) of
(24) is the foregoing

ϕ(r, z, t) = ψ(r, z, t) · Q(r̃ ). (25)

This function satisfies the nonhomogeneous wave equation with the source terms concen-
trated on a smaller ball of diameterκd concentric withS(t) becausef (r, z, t) ≡ 0 for
r̃ ≥ κd/2. Everywhere elseϕ(r, z, t) of (25) is a solution to the homogeneous wave equa-
tion because it coincides withψ(r, z, t) of (23b) for r̃ ≥ κd/2. Consequently,ϕ(r, z, t) of
(25) can be interpreted as the radiation of waves by a compactly supported moving source
f (r, z, t). Numerically, we will be reproducing solutionϕ(r, z, t) given by (25) on the
domainS(t) using finite-difference methods.

3.5.3. Grids and Finite-Difference Schemes

We employ three different explicit central-difference schemes in our simulations. In
all three cases we construct a uniform rectangular grid on the plane(r, z): rl = lhr , l =
0, 1, . . . , Nr , hr = R/Nr , andzm = mhz, m= 0,±1, . . . ,±Nz, hz = Z/2Nz. The discrete
time levels aretn = nτ , n = 0, 1, . . .. For the cell-centered second-order scheme, we keep
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the values of the unknown functionϕ at the grid nodes in thez-direction and at midpoints
in ther -direction:

ϕn+1
l+1/2,m − 2ϕn

l+1/2,m + ϕn−1
l+1/2,m

τ 2
− c2

(
1

rl+1/2

1

hr

[
rl+1

ϕn
l+3/2,m − ϕn

l+1/2,m

hr

− rl
ϕn

l+1/2,m − ϕn
l−1/2,m

hr

]
+ ϕn

l+1/2,m+1− 2ϕn
l+1/2,m + ϕn

l+1/2,m−1

h2
z

)
= f n

l+1/2,m. (26a)

Equations (26a) hold for alll > 0. As in this case we do not have the unknown function
defined on the axis of symmetry, and the closest values that correspond tol = 0 are half
a grid size away,ϕn

1/2,m; then the scheme forl = 0 is obtained by simply assuming that
ϕn

l+1/2,m−ϕn
l−1/2,m

hr
|l=0 = 0, which can be interpreted as a second-order approximation of the

natural condition∂ϕ

∂r |r=0 = 0. This immediately yields forl = 0

ϕn+1
1/2,m − 2ϕn

1/2,m + ϕn−1
1/2,m

τ 2

− c2

(
1

r1/2

1

hr
r1

ϕn
3/2,m − ϕn

1/2,m

hr
+ ϕn

1/2,m+1− 2ϕn
1/2,m + ϕn

1/2,m−1

h2
z

)
= f n

1/2,m. (26b)

For the node-centered second-order scheme,ϕ is taken at the actual grid nodes, and for
l > 0 we have

ϕn+1
l ,m − 2ϕn

l ,m + ϕn−1
l ,m

τ 2
− c2

(
1

rl

1

hr

[
rl + 1/2

ϕn
l+1,m − ϕn

l ,m

hr
− rl−1/2

ϕn
l ,m − ϕn

l−1,m

hr

]
+ ϕn

l ,m+1− 2ϕn
l ,m + ϕn

l ,m−1

h2
z

)
= f n

l ,m. (27a)

To obtain the scheme on the axis of symmetryl = 0 in this case, we need to approximate
Eq. (21). For the ∂2

∂r 2 derivative in this equation we can first formally write∂
2ϕ

∂r 2 |r=0 ≈
ϕ1,m− 2ϕ0,m+ϕ−1,m

h2
r

. This expression obviously reduces to∂2ϕ

∂r 2 |r=0 ≈ 2ϕ1,m−ϕ0,m

h2
r

because of the
symmetry,ϕ−1,m = ϕ1,m, and consequently; we obtain

ϕn+1
l ,m − 2ϕn

l ,m + ϕn−1
l ,m

τ 2
− c2

(
4
ϕn

1,m − ϕn
0,m

h2
r

+ ϕn
0,m+1− 2ϕn

0,m + ϕn
0,m−1

h2
z

)
= f n

0,m. (27b)

The last scheme is the node-centered fourth-order scheme. More precisely, it approximates
spatial derivatives with the accuracyO(h4

r + h4
z) and temporal derivatives with the accuracy

O(τ 2). For l > 1 we have

ϕn+1
l ,m − 2ϕn

l ,m + ϕn−1
l ,m

τ 2
− c2

(
4

3

1

rl

1

hr

[
rl+1/2

ϕn
l+1,m − ϕn

l ,m

hr
− rl−1/2

ϕn
l ,m − ϕn

l−1,m

hr

]
− 1

3

1

rl

1

2hr

[
rl+1

ϕn
l+2,m − ϕn

l ,m

2hr
− rl−1

ϕn
l ,m − ϕn

l−2,m

2hr

]
+ −ϕn

l ,m+2+ 16ϕn
l ,m+1− 30ϕn

l ,m + 16ϕn
l ,m−1− ϕn

l ,m−2

12h2
z

)
= f n

l ,m. (28a)
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For l = 1 we haverl−1 = r0 = 0 and consequently

ϕn+1
1,m − 2ϕn

1,m + ϕn−1
1,m

τ 2
− c2

(
4

3

1

r1

1

hr

[
r3/2

ϕn
2,m − ϕn

1,m

hr
− r1/2

ϕn
1,m − ϕn

0,m

hr

]
− 1

3

1

r1

1

2hr

×
[
r2

ϕn
3,m − ϕn

1,m

2hr

]
+ −ϕn

1,m+2+ 16ϕn
1,m+1− 30ϕn

1,m + 16ϕn
1,m−1− ϕn

1,m−2

12h2
z

)
= f n

1,m.

(28b)

Finally, for l = 0 we again have to approximate Eq. (21). Using symmetry like in the
previous case, we arrive at

ϕn+1
0,m − 2ϕn

0,m + ϕn−1
0,m

τ 2
− c2

(
2
−2ϕn

2,m + 32ϕn
1,m − 30ϕn

0,m

12h2
r

+ −ϕn
0,m+2+ 16ϕn

0,m+1− 30ϕn
0,m + 16ϕn

0,m−1− ϕn
0,m−2

12h2
z

)
= f n

0,m. (28c)

For all three schemes, (26)–(28), setting the discrete counterparts to boundary conditions
(20) on the outer boundary of the auxiliary domain [0, R] × [−Z/2, Z/2] is straightforward.
An extra boundary condition is needed for the fourth-order approximation. As it basically
does not matter what boundary conditions we use on the outer boundary of the auxiliary
domain (see Section 3.2), we simply setϕn

Nr−1,m = 0 in addition toϕn
Nr ,m = 0.

In all the computations conducted, we have used the grids with square cells:Nr = Nz

or equivalently,hr = hz = h. The actual grid dimensionsNr × 2Nz were 64× 128, 128×
256, and 256× 512. Considering a sequence of subsequently more fine grids allowed us
to conduct a grid convergence study for our algorithm; see below. Regarding the time step
τ , all three schemes (26), (27), and (28) are explicit and as such, there is a Courant-type
stability constraint. The selection of the actual time steps is discussed below.

As mentioned, the purpose of presenting the numerical results in this section is to cor-
roborate the theoretical design properties of the lacunae-based algorithm, i.e., to show the
temporally uniform grid convergence on long time intervals. To achieve that, we conduct a
grid refinement study; i.e., we approximate the exact solution (25) on the aforementioned
sequence of successively finer grids. In so doing, the time stepτ for the two second-order
schemes (26) and (27) is always reduced with the same rate as the corresponding spatial sizes
hr andhz; namely, we always takeτ = h/c/

√
3 (remember,hr = hz = h) in this case. For

the fourth-order scheme (28) the time stepτ should be reduced twice as fast (i.e., by a factor
of 4 every timehr andhz are reduced by a factor of 2) to demonstrate the fourth-order overall
grid convergence in the end. In practice, we tookτ = h/c/2 for scheme (28) on the 64× 128
grid, and thenτ = h/c/4 andτ = h/c/8 for the 128× 256 and 256× 512 grids, respec-
tively. The computations in each case were run till the dimensionless timet reached the value
of 200· d/c, i.e., for 200 times the time interval required for a wave to cross the domain.
This certainly qualifies as “long-term” from the standpoint of any conceivable application.

Other parameters and characteristics of the computational setup have been taken as
follows. The temporal partition size 2T , see (12), was found from formula (9) assuming
thatTint = d+ 2T(c+ k)

c− k . The value of the overlap parameter wasσ = 1/2. The function2(t)
of (10) that defines the partition of the right-hand side (11) was built with the help of
the functionP(t) introduced previously in Section 3.5.2. Namely, fort ∈ [σ T, T ] (see
formula (10)) we defined2(t) = P( t − σ T

T(1− σ)
). Finally, to subtract everyϕ j from the overall
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FIG. 2. Grid convergence study for the long-term lacunae-based integration of the wave equation using the
second-order scheme (26).

solution at the proper momentt = ( j − 1+ σ j )T + Tint, we would first march Eq. (14)
from t = ( j − 1+ σ j )T till t = ( j + 1+ σ j )T and then use a Fourier expansion inz
and an expansion with respect to the corresponding discrete eigenfunctions (calculated
numerically) inr to advance it further tillt = ( j − 1+ σ j )T + Tint.

3.5.4. Discussion of the Results

In Figs. 2 and 3 we show error profiles (more precisely, natural logarithm of the relative
error on the domainS(t) in the maximum norm as it depends on the dimensionless time)
on all three grids for both second-order schemes (26) and (27). In Fig. 4, similar curves are

FIG. 3. Same as Fig. 2 for the second-order scheme (27).
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FIG. 4. Same as Fig. 2 for the fourth-order scheme (28).

shown for the fourth-order scheme (28). From these figures we conclude that indeed no error
is accumulated in the course of computations because all error profiles are flat throughout
the entire 200· d/c time interval. Thus, the solution does not deteriorate as time elapses.
Figures 2 and 3 also show that every time the grid is refined by a factor of 2 the error drops
by approximately a factor of 4, which indicates second-order convergence. Similarly, Fig. 4
shows that every time the grid is refined by a factor of 2 the error drops by approximately a
factor of 16, which is an indication of the fourth-order convergence. Consequently, we can
conclude that numerical experiments fully corroborate the theoretical design properties of
the algorithm.

4. LACUNAE-BASED ABCS FOR THE WAVE EQUATION

The lacunae-based algorithm of Section 3 provides a venue for constructing the ABCs
for a class of problems that reduce to the homogeneous wave equation in the far field.
We schematically depict the geometric setup for one such problem in Fig. 5, assuming for
simplicity that there is no source motion,k = 0, and the computational domain is station-
ary. We emphasize though that this is not a limitation, and that the actual ABCs will be
constructed and tested for the general case of a moving computational domain, while the
law of motion can be arbitrary; see Section 3.1, The problem to be solved on the bounded
interior domain, i.e., in the near field (see Fig. 5) may involve some complex phenomena
whose nature, however, is not essential to the current discussion.5 We only require that the
overall combined formulation of the problem be uniquely solvable and well posed under
the assumption of radiation of waves in the far field (fromS(t) toward infinity), where the
problem is assumed to be governed by the homogeneous wave equation. The role of the
ABCs (as mentioned in Section 1) is to provide a closure for the truncated problem solved
on the actual computational domainS(t). This closure has to ensure that the corresponding

5 The interior domain is, of course, the same asS(t) of Section 3; for the stationary case we obviously have
S(t) ≡ S(0).
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FIG. 5. Schematic geometric setup for the ABCs.

finite-domain solution recovered with the help of the ABCs be close to (ideally, exactly
the same as) the solution of the original nontruncated problem restricted to the bounded
domain; see [2].

In the wave propagation framework adopted in this paper, one can say that the ABCs
have to replace the entire far field, i.e., everything beyond the bounded interior domainS(t),
so that the resulting artificial boundary is completely transparent for all the outgoing (i.e.,
radiated) waves. We also note that the incoming waves, provided that they are meaningful
for a particular setup, can, in fact, be taken into account through the boundary conditions
as well, but we do not discuss this issue here for the reason of simplicity.

4.1. Preliminary Considerations in the Continuous Framework

Let ϕc = ϕc(x, t) be a solution to the aforementioned combined problem. In the far field,
i.e., outsideS(t), the functionϕc(x, t) satisfies the homogeneous wave equation. We also
assume for simplicity that the solutionϕc(x, t) “smoothly originates from zero” att = 0 (i.e.,
turns into zero along with its first derivative) in much the same way as the solutionϕ(x, t)
to (5a), (5b) does. This assumption, in fact, will present no limitation when constructing
the ABCs. The argument is the same as the argument that allows us to relax the assumption
of homogeneity of initial conditions when building the original lacunae-based algorithm;
see [23].

Let us now introduce a special multiplier function that is again schematically shown
in Fig. 5. This functionµ = µ(x, t) is defined for all thosex and t , for which the solu-
tion ϕc(x, t) makes sense. We first require that∀t > 0, ∀x 6∈ S(t) : µ(x, t) ≡ 1, or in other
words, that the multiplier be identically equal to one everywhere outside the computational
domainS(t) for all times. We also require that the multiplier be identically equal to zero,
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µ(x, t) ≡ 0, on most of the domainS(t) (again, for everyt) except next to its boundary
from the interior side. An example of the narrow near-boundary transition region where the
multiplier µ(x, t) changes its value from zero to one is shaded in Fig. 5. What is important
is that we require that the multiplierµ(x, t) be a sufficiently smooth function with respect
to bothx andt , which essentially means that the transition within the shaded region in Fig. 5
has to be smooth. Regarding the time dependency ofµ(x, t), once the domainS(t) moves
according to a prescribed law, the construction of the multiplier has to trace that motion. If
the computational domain is stationary,S(t) ≡ S(0), then the multiplier still may, but does
not have to, depend on time.

Next, we apply the wave operatorh ≡ ∂2

∂t2 − c21 of (5a) to the functionµ(x, t) · ϕc(x, t),
which is defined everywhere, i.e., both inside and outsideS(t).6 We will obviously have

h(µϕc) = ∂2µϕc

∂t2
− c21(µϕc) = g(x, t)


= 0 ∀t, ∀x 6∈ S(t)

6= 0 in the transition region

= 0 “well inside” S(t).

(29)

The functiong(x, t) of (29) may, generally speaking, differ from zero only in the foregoing
near-boundary transition region; it is zero outsideS(t) because the functionµϕc coincides
there with the solutionϕc of the homogeneous wave equation; it is also zero insideS(t)
becauseµ = 0 there. In Fig. 5 the nonzero portion ofg(x, t) is identified as the right-hand
side, RHS.

We can now consider the problem (5a), (5b) with the functiong(x, t) of (29) substituted
instead of the generic RHSf (x, t). The key fact that we will need for constructing the
ABCs, and that follows immediately from the unique solvability of the Cauchy problem for
the wave equation, is that the solution to this problem will coincide withµ(x, t) · ϕc(x, t)
everywhere. What will be of particular importance to us is that as such, this solution will
coincide withϕc(x, t) outsideS(t) for all times, becauseµ(x, t) ≡ 1 there. In other words,
we have replaced all of the interior problem onS(t) (no matter how complex it may be) by
the special near-boundary source functiong(x, t) so that the corresponding far-field portion
of the solution, i.e., the wave-radiation solution outsideS(t), remains totally unaffected.
Later, see Sections 4.2 and 4.3, this reduction interpreted in the discrete framework will be
used for setting the ABCs. The idea is to use the exterior solution obtained in an alternative
way through integrating the near-boundary sources as a closure for the interior problem
solved on the finite computational domain.

4.2. The Concept of Discrete ABCs

To construct the ABCs for a finite-difference scheme that approximates the problem
described in the beginning of Section 4, we will employ the considerations similar to those
of Section 4.1, but on the discrete level. As a helpful illustration, we will first consider here
a one-dimensional model example,7 and then, in Section 4.3, show how to build the ABCs
for the actual multidimensional wave propagation problems.

6 Note that the solutionϕc(x, t) may not be defined on all ofS(t) if, e.g., there is a scatterer inside. As, however,
µ(x, t) = 0 there, we can considerµ(x, t) · ϕc(x, t) to be defined everywhere.

7 Generally speaking, one-dimensional problems do not have lacunae (except in special cases); as such, this
example will only demonstrate the formal construction of the ABCs on the grid.
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FIG. 6. Illustration of the one-dimensional example.

Assume that we are solving a one-dimensional combined problem on the entireR. The
computational domainS(t) ≡ S (i.e., the “near field”) is fixed, it is the half-linex ≤ 0
(more precisely, it is{(x, t) | x ≤ 0, t ≥ 0}); its complementR\Srepresents the “far field,”
which is to be truncated and replaced with the ABCs. As such, the ABCs are to be set at
the interfacex = 0. In accordance with the previous discussion, we also assume that the far
field is governed by the one-dimensional homogeneous wave equation

∂2ϕ

∂t2
− c2∂2ϕ

∂x2
= 0, (30a)

which is approximated by the standard, second-order central-difference scheme

ϕn+1
j − 2ϕn

j + ϕn−1
j

τ 2
− c2ϕn

j+1− 2ϕn
j + ϕn

j−1

h2
= 0, (30b)

constructed on the rectangular grid of variablesx andt with sizesh andτ = h/c, respec-
tively, using the five-node stencil shown in Fig. 6. (Note that all the schemes used for
simulations in Section 5.3—see (26)–(28)—are of the same central-difference, explicit,
three-level type. This, however, is by no means a limitation—the ABCs can be constructed
for any type of discretization.)

To create the discrete near-boundary sources similar to those of Section 4.1, and eventually
set the discrete ABCs, we will need to be able to apply insideS the same finite-difference
wave operator of (30b) as the operator we are using onR\S. As such, we formally extend
the exterior discretization, i.e., the rectangular grid withh× τ cells, into the interior domain
S, as shown in Fig. 6. We reemphasize, however, that this is done only for the “artificial”
purpose of building the ABCs. The actual governing equation in the near field, i.e., onS, as
well as its discrete counterpart, may be more complex than the wave equations (30) above.
In fact, neither the scheme stencil nor the grid used for computations in the near fieldas to
be the same as both in the far field (although, they, of course, may). We only require that
the exterior scheme (30b) with the stencil shown in Fig. 6 be applicable tillx = 0. And
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all we need to know, from the standpoint of setting the ABCs, is that the overall combined
problem (near field and far field) is uniquely solvable and well posed.

Let us now consider all nodes of the aforementioned rectangular grid that belong toS(on
all time levels), i.e., those for whichxj ≡ jh ≤ 0. We denote this set of grid nodes byN+;
the complementary set that consists of all nodes fromR\S, i.e., those, for whichxj > 0, is
denoted byN−; see Fig. 6. If we formally apply the five-node stencil of the scheme (36b)
to each node fromN+, then this stencil is obviously going to sweep one more vertical row
of nodes, which already belongs toN− (i.e., toR\S), and which is denoted byγ− in Fig. 6.
Reciprocally, if we apply the stencil to every node inN−, it will also sweep the nodesγ+

that are already inN+. The two-layer grid structureγ = γ+ ∪ γ− will be called the grid
boundary; it represents on the discrete level the continuous interface betweenS andR\S,
which is the vertical linex = 0.

Next, we assume that we integrate the interior problem one time step after another and
that we already know the discrete solutionϕ

(h)
S on the domainS, as well as the values ofϕn

γ

on the grid boundaryγ , up to a certain time leveln (in particular,n may be equal to zero,
which corresponds to the initial conditions).8 These data obviously allow us to advance the
next time stepn+ 1 onγ+ and everywhere insideS; in so doing, we compute the outermost
interior locationγ+ on the leveln+ 1 is computed by scheme (30b) using the stencil shown
in Fig. 6. These data, however, already do not allow us to calculate the discrete solution
ϕ(h) atγ− on the leveln+ 1. And if this valueϕn+1

γ− is not known, then we cannot advance
further to leveln+ 2. Therefore, we conclude that the function of the ABCs in the discrete
framework will be to provide the missing boundary values of the solution atγ− on all
time levels, one after another, starting fromn = 1. This indeed constitutes the closure of
the discrete system solved onS.

To provide the foregoing missing boundary valueϕn+1
γ− for a givenn, we recall that

even though we do not know the discrete solution on leveln+ 1 beyondγ+ (i.e., we do
not know ϕn+1

N− ), we do know that the solutionϕ(h)
S can be complemented onN− to a

solution to Eq. (30b) on all time levels tilln+ 1. For our purposes, we will only need the
existence to this complement rather than its actual representation. Let us now introduce a
multiplier functionµ similar to that we have used in Section 4.1. The near-boundary interior
transition region for this multiplier is schematically shown by the shaded area in Fig 6. We
apply this multiplier to the combined discrete solutionϕ(h)

c ≡ ϕ
(h)
N+∪N− on all time levels

includingn+ 1 (obtainingϕ(h)
N+ may require projectingϕ(h)

S onto the gridN+). When this
is done, nothing changes onN− ∪ γ+, becauseµ ≡ 1 for x ≥ 0. All the changes due to
multiplication ofϕ(h)

c by µ will obviously be introduced onN+\γ+ only. Those amount to
a smooth passage within the transition region (see Fig. 6) from the actual unaltered values
of the solution onγ+ to zero “well inside” the computational domain.

Next, similarly to Section 4.1, we apply the discrete wave operatorh
(h) of (30b) to the

modified solutionµϕ(h)
c . As ϕ(h)

c is defined up to the leveln+ 1, the resultg(h) will be
defined up to the leveln. Analogously to (29), we obtain for all levels tilln

h
(h)
(
µϕ(h)

c

) = g(h)


= 0 on the gridN−
6= 0 onγ+ in the transition region
= 0 “well inside”N+.

(31)

8 We use the subscript “S” in ϕ
(h)

S rather than “N +” to emphasize that the actual interior discrete solution may
be computed on a different grid.
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Notice, that we can claim that the result in (31) is zero onN− only because nothing has
been modified byµ on γ+ and beyond. As such, we are simply using the fact thatϕ(h)

c is
a solution to the homogeneous equation outside the computational domain, and we do not
need to know the explicit form of this solution.

Finally, we solve the nonhomogeneous counterpart to Eq. (30b) driven by the RHSg(h) of
(31) everywhere onN+ ∪N−; this will be henceforth referred to as solving the auxiliary
problem. According to our construction, solving the auxiliary problem will allow us, in
particular, to recover the value ofϕn+1

γ− , which was not known previously, and which can
now be supplied to the interior scheme as the missing boundary value. This means that we
will have provided the ABCs for the interior problem, because in so doing we complete the
time leveln+ 1 and facilitate advancing the next leveln+ 2.

The are several important comments to be made regarding the foregoing ABC algorithm.
At a first glance, the new formulation simply does not change much from the standpoint
of solving the original infinite-domain problem. Indeed, all we have done is replaced the
interior problem by the artificial near-boundary sources so that the exterior solution re-
mains unaffected. Then, we suggested the use of this exterior solution to close the interior
discretization. However, obtaining this solution, i.e., solving the auxiliary problem, basi-
cally brings along the exact same set of complications that we have been trying to avoid
by introducing the ABCs. Indeed, the domain of the auxiliary problemN+ ∪N− is still
unbounded and as such, special treatment will be required for its numerical solution.

There is, however, a fundamental difference. The new auxiliary problem is linear through-
out the entire space, and it is driven by known sources that are compactly supported inside the
computational domainS. Consequently, the lacunae-based algorithm of Section 3 appears
to be a most natural tool to solve it.9 Employing the lacunae-based algorithm immediately
implies that the domain of the auxiliary problem becomes bounded. Moreover, the “suffi-
ciently retarded” sources do not contribute to its solution (see Section 3); i.e., only a limited
extent of temporal prehistory of the solution will be needed to sustain the continuous time
marching no matter how far in time we would like to advance the solution. In other words,
the missing boundary value for the interior discretizationϕn+1

γ− can be obtained using only
finite computer resources in terms of both memory and number of arithmetic operations.
Furthermore, these resources (say, per time level) will not increase no matter for how long we
may need to run the computation, i.e., how largen may become. In this sense, the proposed
ABCs become “true ABCs,” i.e., the procedure that guarantees the appropriate closure of
the truncated problem with only finite nongrowing amount of computer resources required.
In addition to that, we are guaranteed that the ABCs as a part of the overall algorithm will
not contribute toward the buildup of numerical error during long runs.

The proposed ABCs can obviously be implemented via alternating interior/exterior steps.
Namely, we advance one time step in the interior (includingγ+) assuming that all the data
that we need from the previous time levels are available. The resulting newly calculated
time level will be the only one to which the multiplier has not been applied yet. We multiply
it by µ, and then apply the direct operator thus obtaining the right-hand sideg(h), see
(31), on one more time level as well. Finally, we perform one step of the lacunae-based
integration of the auxiliary problem driven byg(h) and obtain the missing boundary value

9 We reiterate that this algorithm cannot be applied in the case of one space dimension, but our ultimate goal
is three-dimensional problems (see Section 4.3) and the considerations of the current section are for illustrative
purposes only.
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for the interior problem. Then, the procedure cyclically repeats itself. Summarizing, we can
say that having advanced the interior solution, we can then generate a new contribution to
the RHS of the auxiliary problem and subsequently advance its solution, which, in turn,
allows us to calculate the next interior step.

An important observation, which is easy to make, is that the missing boundary valueϕn+1
γ− ,

which the ABCs provide, does not, of course, depend on the actual shape of the multiplier
µ in the transition region. Indeed,µ is defined so that it does not alter the solution on
the grid boundaryγ . Consequently, when we first apply the direct operator toµϕ(h)

c , see
(31), and then integrate the nonhomogeneous wave equation driven byg(h), the solution
on γ will remain unchanged no matter what changes have been introduced byµ in the
interior. As such, the valueϕn+1

γ− will only depend on the values of the solution onγ on all

previous time levels, as well as onϕn+1
γ+ . Moreover, since all the operations that we perform

when constructing the ABCs are linear, we can symbolically write the resulting boundary
condition as a linear form,

ϕn+1
γ− = l

(
ϕn+1

γ+ , ϕn
γ , ϕn−1

γ , . . .
)
. (32)

Technically, the dependency ofϕn+1
γ− on the previous time levels, see (32), involves all of

the latter, fromϕn
γ all the way back tilln = 0. However, the use of the lacunae in three space

dimensions will allow us to truncate (32) and leave only several levels that immediately
preceden+ 1; the number of the levels involved will be fixed and will not increase with
the increase ofn. As such, temporal nonlocality of the ABCs will be limited, and this will
not be a consequence of any approximation, but rather an implication of the fundamental
properties of the problem. We also note that the representation of the ABCs in the form of
(32) is primarily for convenience and compactness in notation. In fact, the coefficients of
the linear forml need never be known explicitly except, possibly, when multiple interior
problems are solved with the same exterior model (which means the same grid, same
geometry, and same scheme). In this case it may be beneficial to calculate the forml once
ahead of time, compared to the straightforward calculation ofϕn+1

γ− many times according
to the procedure outlined above.

It is also important to mention that boundary condition (32) can be obtained in the frame-
work of a general unsteady ABC methodology proposed by Ryaben’kii in [26] (see also
older work [28]) for a variety of problems, including multidimensional cases, domains of
varying shape, and different types of schemes—explicit as well as implicit. Work [26, 28]
describes the theoretical construction of the ABCs per se and does not address any issues re-
lated to the actual computations (for example, using lacunae-based integration, as proposed
in the current paper). The methodology of [26, 28] relies on the concepts of generalized
potentials and boundary projection operators of Calderon’s type obtained and implemented
in the discrete framework by means of the difference potential method; see [29–32]. From
this perspective, the ABCs of [26, 28] , and the boundary condition (32) in particular, can
be interpreted as discrete counterparts to Calderon’s boundary equations with projections
in the unsteady case. In Section 4.3 we will describe a direct approach to obtaining multidi-
mensional ABCs on moving boundaries, with no explicit use of the apparatus of Calderon’s
projections, and will also show how to apply the lacunae-based algorithm to perform the
computations needed for these boundary conditions.

To conclude this section, we emphasize that even thoughϕn+1
γ− obtained according to

(32) formally does not depend on the shape of the multiplierµ insideS, we still need to
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have this multiplier smooth. In other words, we could not have used, e.g., a step function,
instead ofµ. The reason is that nonsmoothness will ruin lacunae in the discrete solution (see
Section 3 and [23] for more detail) and consequently, we will no longer be able to use the
lacunae-based integration for solving the auxiliary problem and as such, setting the ABCs.

4.3. General Construction of Discrete ABCs

Similarly to the setup of Section 3, we now consider a domainS(t) ∈ R3 that has finite
diameterd for all times and other than that may travel in space according to a prescribed
law with the only limitation being that its maximum speed be subsonic,k < c. S(t) will be
the computational domain, or near field. In the far field, i.e., outsideS(t), we assume that
our model is governed by the homogeneous wave equation,

∂2ϕ

∂t2
− c2

(
∂2ϕ

∂x2
1

+ ∂2ϕ

∂x2
2

+ ∂2ϕ

∂x2
3

)
= 0, t ≥ 0. (33)

As we have discussed, insideS(t) the solutionϕ = ϕ(x, t) may be governed by a more
complex equation/system, but all we need to assume is that the overall problem be uniquely
solvable and well posed under the condition of waves’ radiation toward infinity. For sim-
plicity, we also assume homogeneity of the initial data everywhere, which is, however, not
a limitation (see [23]).

Let us now introduce the discretization grid for Eq. (33). In principle, we need this grid
only in the far field, i.e., outsideS(t), because the interior problem may be discretized in
a different way, as indicated before. As, however, we have also seen, to obtain the ABCs
we need to set up the auxiliary problem for the nonhomogeneous counterpart of Eq. (33)
driven by the special near-boundary sources. The auxiliary problem is to be formulated
and solved on the entire space. As such, we introduce the grid for the linear wave equation
on the entireR3× [0,∞) as well. We denote byN the collection of all grid nodes in
R3× [0,∞), on which we evaluate the solutionϕ. Since (33) is an evolution equation,
it is convenient to considerN as a composition of spatially aligned grid hyperplanes;
N = N0 ∪N1 ∪ · · · ∪Nn . . .. EachNn is a spatial grid onR3, and we emphasize that they
may, but do not have to, be the same on different levelsn.

Let the individual nodes of the gridN be denoted byn. Equation (33) is approximated
by a finite-difference scheme, which we assume, of course, to be consistent and stable:∑

n∈Nm

amnϕn = 0. (34)

In (34),Nm denotes the stencil attributed to the nodem, andamn are the corresponding
coefficients. When we say that the stencil is attributed to a particular node, we mean that the
residuals of the discrete equation are evaluated at this particular grid location. Regarding
this, we note that the residuals of the discretized Eq. (33) may be, but do not have to be,
evaluated on the same gridN . To preserve the generality of the discussion, we assume that
there is another, different, gridM in R3× [0,∞), on which we keep the residuals, as well
as the right-hand sides, if any, of the discrete wave equation. The subscriptm in Eq. (34)
basically refers to this grid,m ∈M. In the one-dimensional example of Section 4.2, both
gridsN andM were simply the same, and we did not have to distinguish between the two.
To give an example of the opposite type, we mention the Yee scheme—see [33]—which
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is one of the primary tools for discretizing the Maxwell equations10 and which involves
staggering in both space and time.

Next, we introduce two subsets of nodes of the gridN . Let the levelNn correspond to
the actual moment of timetn. For everyn, we defineN+n as the set of all those nodes and
only those nodes on this level that belong to the domainS(tn), andN−n as the complement
of N+n to the entireNn :N−n = Nn\N+n . In other words,N−n contains all those nodes and
only those nodes ofNn that belong toR3\S(tn). Subsequently, we define the setN+ as the
composition of allN+n for all levels, and the setN− as the composition of allN−n for all
levels:

N+ =
⋃
n

N+n , N− =
⋃
n

N−n .

Clearly,N− = N \N+.
In our definition of the scheme, see (34), we have identified the stencilNm with the grid

locationm, at which the residual is evaluated. From here on, we will assume for simplicity
that the scheme (34) is explicit. In this case, there is only one nonzero coefficientamn on the
upper time level of the stencilNm. We will denote the corresponding grid node byn̂, and
when it may not cause confusion, we will refer to the same stencil as eitherNm orNn̂. It
will also be convenient to introduce the four-dimensional (space–time) vectorb= n̂−m.
This vector defines the relative position of the noden̂ at which the upper-level coefficient
is nonzero;amn̂ 6= 0, with respect to the “center” of the stencilm. This vector is obviously
constant; it depends only on the local structure of the stencil and does not depend on where
exactly on the grid this stencil is applied at every given moment. In the one-dimensional
example considered previously, we would haveb= (τ, 0).

Let us now apply the stencilNn̂ to every nodên ∈ N+; in so doing, we see that the
stencil obviously sweeps the entire gridN+, as well as a portion of the gridN− next to the
interface; we will denote this portion by

γ− =
[ ⋃

n̂∈N+
Nn̂

]⋂
N−.

In Fig. 7, we present a one-dimensional illustration11 similar to that in Fig. 6 for the case
of a uniform motion of the computational domain, where the space–time trajectory of the
boundary is a straight line (the setγ− is denoted by small circles). From the standpoint of
implementation, the values of the solution at the nodesγ− are exactly those that need to be
provided by the ABCs from the exterior side so that to be able to calculate the solution at
every interior noden ∈ N+ using the scheme (34). Reciprocally, the stencilNn̂ applied to
every nodên ∈ N− sweeps additional nodesγ+ ⊂ N+, see “bullets” in Fig. 7,

γ+ =
[ ⋃

n̂∈N−
Nn̂

]⋂
N+.

10 The simplest version of the Maxwell equations describes the propagation of electromagnetic waves in vacuum,
which is a wave model similar in many respects to that given by (33).

11 We note again that everywhere in this section the one-dimensional examples are for illustration purposes only;
the actual algorithm is three-dimensional.
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FIG. 7. One-dimensional illustration of the case of a moving domain.

The setγ+ complementsγ− to the complete grid structure known as the grid boundaryγ

(see [30, 31]):

γ = γ+
⋃

γ−.

The grid boundary is a multilayer fringe of nodes (two-layer fringe in the particular case of
a second-order scheme with the stencil depicted in Fig. 7) that is located near the continuous
boundary and straddles it in some sense (cf. Section 4.2).

To proceed with the construction of the ABCs, we will need to assume hereafter that
the region of linearity, i.e., the area where the solution of the overall combined problem
is governed by the linear homogeneous wave equation, extends “a little bit” to the interior
of the computational domainS(t) as well. More precisely, this region will be assumed to
extend inward at least as far as the entire grid boundaryγ . This obviously presents no
limitation from any standpoint. The multiplierµ = µ(x, t) in this case is required to be
identically equal to one,µ(x, t) ≡ 1, not only outsideS(t), but also inside—again, to the
extent ofγ+. As such, the transition region for the multiplier, which is schematically shown
by the darker gray shading in Fig. 7, is shifted away from the boundary ofS(t).

To actually build the ABCs, we will perform the procedure outlined in Section 4.2. What
we actually need in the discrete framework is to obtain the missing exterior boundary values
of the solutionϕn+1

γ− on every time leveln+ 1, or in other words, to complete this time level
to be able to advance the next time step. To do that, we take the solution already computed
insideS(t) up to the leveln+ 1, multiply it byµ, and then apply the discrete operatorh

(h)

everywhere. In doing so we assume, as mentioned before, that starting fromγ outward, the
solution satisfies the discrete homogeneous wave equation. In the general case that we are
looking at now, an application of the operatorh

(h) brings us from the gridN to the grid
M. The construction of the grid boundaryγ and multiplierµ guarantees that on all time
levels up ton the near-boundary artificial sourcesg(h) will satisfy (cf. (31))

h
(h)
(
µϕ(h)

c

) = g(h)


= 0 for suchm ∈M thatm+ b ∈ N−
6= 0 for such near-boundarym ∈M thatm+ b ∈ N+
= 0 one the gridM “well inside” S(t).

(35)

Formula (35) suggests that in addition to the actual interface between the domains, i.e., the
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boundary ofS(t), it will be convenient to consider another space–time trajectory obtained
from this original interface by the constant displacement−b; it is shown by the dashed-
dotted line in Fig. 7. The right-hand sideg(h) will be zero onM everywhere outside this new
displaced boundary and will differ from zero right next to it on the interior side. In Fig. 7,
we schematically show by the lighter gray shading the region where we still haveµ = 1
but the RHSg(h) may already differ from zero. Note, in the example in Section 4.2, we did
not need to consider the displaced interface because the domainS(t) was stationary and the
displacementb was parallel to the time axis,b= (τ, 0). Another important case when the
two boundaries would coincide iŝn = m ⇔ b= 0. However, we cannot generally assume
that for time-dependent problems. On the other hand, we mention that the grid boundaries
originally introduced in [29–31] and previous publications by Ryaben’kii for the solution
of steady-state problems using the difference potential method, have been constructed so
that just the centerm of the stencilNm (where the residuals are evaluated) would sweep a
given grid subdomain and as such, generate the aforementioned fringe of nodesγ next to
the continuous boundary.

Let us now make a few remarks of an explanatory nature regarding the structure of the
grid boundaryγ . It obviously depends only on the type of the stencilNm and geometry of
the actual continuous boundary that it straddles. From the definition ofγ it is easy to see that
once we have a solution to the homogeneous equation onγ and everywhere in the exterior,
and operate byh(h) on this solution, then we can guarantee without actual calculation that the
result will be zero for allm ∈M: m+ b ∈ N−. However, we cannot “touch” even one single
node fromγ in order not to lose this property. If, for example, we allow an alteration (viaµ 6=
1) of a node fromγ+ (see Fig. 7), it will necessarily affect the exterior RHS. The latter may,
generally speaking, become nonzero at some node(s)m ∈M: m+ b ∈ N−, and we will
no longer be able to actually calculate it because we do not know anything about the exterior
solution beyondγ except that it satisfies the homogeneous equation. We see, therefore, that
it would ruin the entire derivation. On the other hand, the construction of the grid boundaryγ

is consistent in the sense that to calculate the actual nonzero near-boundary sources for those
m ∈M, for whichm+ b ∈ N+, it is sufficient to know the solution only onγ and further
inward, nothing outsideγ needs to be known. As for the valuesϕ

(h)
γ− that are still needed,

those are provided by the ABC algorithm on every time level and as such are available on
all subsequent levels for calculating the source termsg(h) of the auxiliary problem.

Having outlined the construction of the grid boundaryγ and near-boundary sourcesg(h)

in the general case, we build the actual ABC algorithm in much the same way as described
previously. We perform the alternating interior/exterior steps: First advance one step in the
interior, then applyµ and calculate one more level of the sourcesg(h), and finally make one
step of the lacunae-based integration of the auxiliary problem driven by these sources (see
Section 3), thereby providing the missing data for advancing the next interior step. Then,
the procedure cyclically repeats itself. To solve the auxiliary problem in this general case,
we will obviously need a full-fledged version of the lacunae-based algorithm (see Section 3)
that accounts for the motion of the sources and employs periodic boundary conditions in
space and continuous time-marching with cyclic subtraction of the retarded contributions.
As shown, implementation of the lacunae-based integration technique guarantees that the
domain of the auxiliary problem will be bounded, and the computer resources needed for
the ABCs will be finite and will not grow with time. Other properties of the ABCs outlined
in Section 4.2, namely, independence of the shape of the multiplierµ, and the possibility
of expressing the boundary values on the current time level as a linear function of the
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values on the previous levels—see (32)—hold in the general framework of this section
as well. Because of the lacunae, the aforementioned linear form will depend only on the
finite nonincreasing number of the preceding time levelsn, essentially those included in
the summation (15) once this formula is discretized on the gridN . This means that the
temporal nonlocality of the ABCs will be limited. As for the multiplierµ, it has to be
chosen sufficiently smooth to maintain good quality of the lacunae in the discrete solution,
see Section 5.

5. NUMERICAL EXPERIMENTS WITH THE ABC s

Hereafter, we discuss the results of numerical computations for several test problems
that we have analyzed using the ABCs developed in Section 4. The computational setup
for these problems is in many respects identical to that described in Section 3.5. Namely,
the cylindrical coordinate system, the domain of interestS (a sphere of diameterd = 1.8
centered on thez-axis), and the auxiliary domain [0, R] × [−Z/2, Z/2] (an(r, z) rectangle
[0, π ] × [−π, π ]) were introduced in Section 3.5.1. The differential equation to be solved
in the far field, i.e., outsideS, is the homogeneous wave equation (see (19a), wheref ≡ 0
outsideS) with the speed of soundc = 1; the initial conditions are homogeneous—see
(19b)—and the auxiliary boundary conditions are also the same as before—see (20). The
finite-difference schemes and grids, including the refinement strategies needed for studying
the grid convergence, are introduced in Section 3.5.3 and used hereafter with no alterations.
The partition (11) is built with the help of the same function2(t), which satisfies the
general definition (10) and which we actually construct in Section 3.5.3. There are, of
course, problem-specific characteristics that are different from those given in Section 3.5,
and also different for each of the problems analyzed in this section. These characteristics
are discussed in Sections 5.1–5.3.

5.1. The Wave Equation with a Known Exact Solution

The first case that we analyze in the framework of the ABCs is, in fact, the exact same prob-
lem that we solved in Section 3.5. It is the wave equation (19a) with the homogeneous initial
conditions (19b) driven by a compactly supported oscillatory source in straightforward uni-
form motion. The speed of this motion isk = 0.2, and the source termf = f (r, z, t) itself is
defined by expression (24),f (r, z, t) = hϕ(r, z, t), so that∀t ≥ 0: suppf (r, z, t) ⊆ S(t),
where the exact solutionϕ(r, z, t) = ψ(r, z, t) · Q(r̃ ) of (25) is obtained using Lorentz’
transform (22). The functionsχ(t) and Q(r̃ ) needed for defining the exact solution (25)
(see also formulae (23a) (23b)) are the same as those introduced in Section 3.5.2.

The key difference between the current approach and that of Section 3.5 is that previously
we applied the lacunae-based algorithm directly to the original problem. Here, we rather
decompose the problem into the near fieldS(t) and far fieldR3\S(t), even though both are
governed by the same wave equation. The integration in the near field is then performed by
the conventional time marching. The exterior closure needed to sustain this time marching
is provided by the discrete ABCs on the boundary ofS(t). The ABCs are constructed on
the basis of the procedure outlined in Section 4—through the lacunae-based integration of
the artificial near-boundary sources.

Similarly to Section 3.5, we have implemented three different schemes, (26), (27),
and (28), and every time integrated the problem until the dimensionless time reached
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FIG. 8. Grid convergence study with the lacunae-based ABCs for the wave equation using the second-order
scheme (26).

t = 200· d/c. The multiplierµ = µ(r, z, t) was constructed to have four continuous deriva-
tives with respect to all its arguments. A smooth transition from 0 to 1 was obtained with
the help of the same functionP(·) of Section 3.5.2. that employs algebraic polynomials of
degree 9. The extent of the transition region varied slightly between different cases with
no noticeable effect on the quality of the solution. For all computational variants that we
considered it was within the range of several grid cells (typically, 8–10; see Section 5.4 for
further details).

In Figs. 8–10 we present the results of the grid convergence study for the wave equation
(19a) integrated with the lacunae-based ABCs over the time interval [0, 200· d/c]. The
errors are evaluated on the interior domainS(t) in the maximum norm. As mentioned,

FIG. 9. Same as Fig. 8 for the second-order scheme (27).
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FIG. 10. Same as Fig. 8 for the fourth-order scheme (28).

the computational setup follows that of Section 3.5, where we applied the lacunae-based
algorithm to the original problem directly; see error profiles on Figs. 2–4. Each scheme, (26),
(27), or (28), was implemented on a sequence of three grids: 64× 128, 128× 256, and
256× 512. The only difference is that in this case partition (11) applies to the artificial
near-boundary sources needed for constructing the ABCs, rather than the original right-
hand sidef of (24) that drives Eq. (19a).

An obvious observation which is easy to make is that Figs. 8–10 look practically in-
distinguishable from Figs. 2–4, respectively. In other words, the actual levels of the error
on the corresponding grids are essentially the same. As such, we conclude that in this
most simple case the introduction of the ABCs makes the outer boundary of the compu-
tational domain completely transparent for all the outgoing waves. This is equivalent to
saying that the external boundary generates no reflection or alternatively, that any imper-
fections associated with the treatment of the outer boundary can always be kept on or below
the level of the truncation error pertinent to the interior discretization. In this sense, the
discrete lacunae-based ABCs that we have constructed can be regarded as an ideal clo-
sure of the interior finite-difference scheme. Experimentally, this is corroborated by the
fact of nondeteriorating convergence of the scheme with the theoretically prescribed rate
to the specially constructed exact solution of wave-radiation type on the computational
domainS(t).

5.2. Nonuniform Motion of the Source

In this section, we consider a somewhat more complex case of straightforward but nonuni-
form (i.e., accelerated) motion of the source.12 All other parameters that define the continu-
ous problem and the computational setup remain exactly the same as before; see Sections 3.5
and 5.1. What is new in this case is that we setk̃ = 0.1 and introduce the law of accelerated

12 In all numerical examples we consider only straightforward motion because its direction has to be aligned
with thez-direction of the cylindrical coordinate system; otherwise, the symmetry will be lost. In general, this is
not a limitation.
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motion for the center of the sphereS(t)

r = 0, z≡ z0(t) = k̃t + k̃(cost − 1), (36)

and the excitation for the wave equation (19a)

f (r, z, t) = cos

(
2r̃

κd

3π

2

)
· P
(

2r̃

κd

)
·
(

1+ 1

4
sin(
√

2t)

)
· P
(

1− t

2π

)
, (37)

where againd = 1.8, κ = 0.8, r̃ 2 = r 2+ (z− z0(t))2, and the functionP(·) is defined
in Section 3.5.2. The right-hand side functionf of (37) obviously has four continuous
derivatives everywhere with respect to all its arguments. We purposely chose the temporal
behavior of this function to be sufficiently complex; the frequency of the magnitude oscil-
lations and that associated with the motion are incommensurable. Let us also note that the
parameterk that affectsTint = d+ 2T(c+ k)

c− k , and as such,T onceZ is given, see (9), as well
as2(t), see formula (10) and Section 3.5.3, has the meaning of the maximum speed of
the domain; see Sections 3.1 and 3.2. From formula (36) one can conclude thatk = 0.2 as
before.

Unlike in the previous case, see Sections 3.5 and 5.1, the analytic solution of Eq. (19a)
driven by the right-hand side (37) and subject to the initial conditions (19b) is not readily
available. As such, we first calculate the fine-grid reference solution of this problem on the
domainS(t) using the original lacunae-based algorithm of Section 3, and then compare
the solutions obtained on coarser grids with the help of the ABCs of Section 4 against this
reference solution.

Equation (19a) driven by the RHS (37) was integrated on the fine grid of dimension
512× 1024 till t = 50 · d/c using the lacunae-based algorithm of Section 3 implemented
with the fourth-order scheme (28). We chose here a time interval shorter than that we used
for previous demonstrations (Sections 3.5 and 5.1) in order not to make the computation of
the reference solution excessively expensive. This interval [0, 50 · d/c] is still quite suffi-
cient for experimentally judging the convergence; see Figs. 11 and 12. Having computed the
fine-grid reference solution, we then integrated the same problem (19a), (19b), (37) on the
same collection of coarser grids that we used before, 64× 128, 128× 256, and 256× 512,
with the help of the ABCs of Section 4, and compared the results with the reference solu-
tion. In so doing, we have employed only the two node-centered schemes: The second-order
scheme (27) and the fourth-order scheme (28). The reason is that when both a fine-grid so-
lution and a coarse-grid solution are calculated using a node-centered scheme, it is very
easy to compare them pointwise (e.g., taking every other, every fourth, etc., node of the
fine grid). In contradistinction to that, if we were to calculate a coarser-grid solution using
the cell-centered scheme (26), then to compare it against the reference solution we would
have had to use interpolation on the grid. This has a potential of contaminating the re-
sults because of the interpolation error; therefore we did not perform the aforementioned
comparison for scheme (26).

When the solution to Eq. (19a) driven by a nonuniformly moving source (37) are com-
puted, the computational domainS(t) of course traces the motion of the source. As such,
the ABCs are set on an artificial boundary that performs accelerated motion. In Figs. 11
and 12, we compare the solutions obtained with the help of the lacunae-based ABCs with
the fine-grid reference solution. Figures 11 and 12 show the dependency of the numerical
error on dimensionless time for different computational variants, i.e., different schemes and
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FIG. 11. Convergence of the solution to Eqs. (19a), (37) obtained with the ABCs to the fine-grid reference
solution using the second-order scheme (27).

grid dimensions. Fig. 11 clearly indicates the second-order convergence of scheme (27).
For scheme (28), we observe the fourth-order convergence in Fig. 12.

To assess the performance of the boundary conditions, we computed the same solution
on the same collection of coarser grids (64× 128, 128× 256, and 256× 512) with the
same schemes (27) and (28), but with no ABCs, rather using the original lacunae-based
algorithm of Section 3 (as we did when we computed the reference solution). In Figs. 13
and 14, we compare the results with the exact solution. As expected, scheme (27) converges
uniformly in time with the second order (see Fig. 13), and scheme (28) with the fourth order
(see Fig. 14).

Comparing Figs. 11 and 13 we conclude that for the second-order scheme (27), the
introduction of the ABCs again gives rise to no reflection back into the computational domain

FIG. 12. Same as Fig. 11 for the fourth-order scheme (28).
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FIG. 13. Same as Fig. 11, but the solution to (19a), (37) is obtained with the original lacunae-based algorithm.

(i.e., no reflection beyond the level of the truncation error in the interior, cf. Section 5.1).
As concerns the fourth-order scheme (28), one can still notice slight differences between
the respective curves in Figs. 12 and 14. The difference is most visible for the finest grid
256× 512, less visible for the medium grid 128× 256, and practically nonexistent for the
coarsest grid 64× 128. This indicates that a small amount of reflections due to the ABCs
may be present in the solution, although the actual elevation of the error in Fig. 14 compared
to Fig. 13 is so low that we can regard these reflections as negligible anyway. Nonetheless,
the discrepancy between the corresponding curves needs to be accounted for. We attribute
it to the higher sensitivity of the fourth-order algorithm to the quality of the discrete lacunae.
This phenomenon is commented on in Section 5.4. It is not of a fundamental nature; the
quality of the lacunae can rather be controlled by appropriately choosing the parameters of
the numerical procedure, more precisely, the shape and smoothness of the multiplierµ.

FIG. 14. Same as Fig. 12, but the solution to (19a), (37) is obtained with the original lacunae-based algorithm.
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Summarizing for the case of accelerated motion, we see that the solution of nondeteriorat-
ing quality on long time intervals can still be successfully computed using the lacunae-based
ABC. To the best of our knowledge, no other ABC methodology available in the literature
can handle artificial boundaries of domains that move with acceleration, while always keep-
ing the reflections on or below the level of truncation error that pertains to a given interior
discretization.

5.3. Variable Speed of Sound

For the last set of numerical experiments that we report in this paper, we wanted to select
a supposedly harder case that would be more susceptible to the buildup of numerical error
inside the computational domainS(t), while keeping the computational setup basically the
same as that in the previous experiments; see Sections 3.5, 5.1, and 5.2. To this end, we
notice that the discretization error for all three schemes, (26)–(28), that we used previously
for our simulations is primarily of the dispersive nature, because each of these schemes is an
explicit central-difference type. In the examples of the current section, we will artificially
increase the numerical dispersion inside the computational domainS(t) and experimentally
assess the resulting performance of the combined methodology (interior scheme and the
ABCs of Section 4).

It is known that numerical dispersion for central-difference schemes is more visible for
more “suboptimal” Courant numbers. In other words, the further below the stability limit
the Courant number is, the more dispersive the numerical waves become. In particular,
it is easy to see that the one-dimensional second-order scheme (30b) is exact and simply
reduces to pure propagation along the characteristics, when the Courant numberτc

h is equal
to 1. Reducing this number will introduce dispersion of numerical waves. (Of course, the
convergence of the scheme still implies that the phase shift for every given frequency will
become smaller as the grid sizes become smaller.) The analysis of the one-dimensional case
also indicates that in the multidimensional settings numerical dispersion is unavoidable. This
is easy to understand already from the following qualitative consideration: To guarantee
stability for all the waves propagating at an angle with respect to the grid lines one has to
choose a smaller Courant number, which will necessarily be suboptimal for those waves
that propagate along the grid lines.

Our intention now is to artificially increase the numerical dispersion inside the com-
putational domain and subsequently test the performance of the combined algorithm. To
do that, we gradually reduce the speed of soundc in the direction from the peripheral
areas ofS(t) toward its center. As stability across the entire domain will still be lim-
ited by the maximum speed of sound, the corresponding Courant number near the cen-
ter will be suboptimal. This will imply higher levels of dispersion closer to the domain
center. This will also mean that any wave that originates inS(t) will stay inside the do-
main longer compared to the previously analyzed cases of constantc. The explanation is
obvious—the interior speed of propagation is lower. Consequently, we may expect that
every particular wave will accumulate more error before it leaves the domainS(t). Note,
we do not attempt to accurately quantify the aforementioned phenomena because this is not
of the central interest for our current discussion. However, even on the level of qualitative
understanding of the mechanisms of numerical dispersion, it is certainly of interest to exper-
imentally assess the performance of the scheme with the lacunae-based ABCs for the case of
variablec.



GLOBAL ABCS FOR WAVE PROPAGATION 751

For our computations, we have chosen the following law of variation of the speed of
sound inside the computational domainS(t),

c̃2 = c2

(
1− P0 · P

(
2r̃

κd

))
, (38)

wherec is the speed of sound in the far field,d denotes the diameter of the computa-
tional domain,κ = const,r̃ 2 = r 2+ (z− z0(t))2, and the functionP(·) is defined in Sec-
tion 3.5.2. The actual values of the parameters were taken exactly the same as before,c = 1,
d = 1.8, κ = 0.8; the motion of the domain center is straightforward and uniform like in
Sections 3.5.2 and 5.1,z0(t) = kt, wherek = 0.2; the grid sizes, grid dimensions, con-
figuration of auxiliary domain, auxiliary boundary conditions (20), and parameters of the
temporal partition of unity are also the same as those defined in Section 3.5. The constant
P0 in expression (38) determines the extent of reduction of the speed of sound at the center
of S(t). In our simulations, we have tried two specific values:P0 = 0.9 and P0 = 0.99.
The reference exact solution that we used in the case of variable speed of sound is the
same traveling-source solution (23b), (25) that we employed before. However, instead of
Eq. (19a) we are now solving

∂2ϕ

∂t2
− c̃2

(
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ ∂2ϕ

∂z2

)
= f̃ (r, z, t), t ≥ 0, (39)

wherec̃2 is defined by (38). Substitutingϕ(r, z, t) of (25) into the left-hand side of Eq. (39)
we obtain the new source term̃f (r, z, t) that will obviously differ from f (r, z, t) of (24)
that we used previously in Sections 3.5 and 5.1. This new source term is still compactly
supported on the domainS(t) ⊂ R3 for all times, and it now drives the solution (25) to
Eq. (39) subject to initial conditions (19b) on the entire space. We do not provide here
the explicit expression for̃f (r, z, t) because it is cumbersome, but the computation of the
new source term is straightforward. Concerning the methodology for setting the ABCs, it
remains exactly the same as that in Section 4. Indeed, we point out that the variation of the
speed of sound pertains to the original interior problem only. And the auxiliary problem that
we solve for the purpose of setting the ABCs is by definition formulated with the constant
speed of sound throughout its entire domain.

In Figs. 15–17 we present the results of the grid convergence study for the caseP0 = 0.9
(see formula (38)) on the same sequence of three grids that we used previously: 64× 128,
128× 256, and 256× 512. From Figs. 15 and 16 we conclude, as before, that the algorithm
converges with the second-order for both schemes (26) and (27); and in Fig. 17 we again
observe the fourth-order convergence of scheme (28). The convergence obviously does
not deteriorate as the time elapses, at least till dimensionless time reaches the moment
200· d/c when we stop the computation. This shows that similarly to the previous cases
of the constant speed of soundc, the proposed numerical procedure in the case of variable
speed of sound is still capable of providing the solution of nondeteriorating quality. Note,
however, that as the original lacunae-based algorithm cannot be applied to the equation with
variablec throughout the entire domain, we cannot directly compare in this case numerical
results obtained with the ABCs against those obtained with no ABCs as we did before
(see, e.g., comparison of the results on Figs. 11 and 12 with those in Figs. 13 and 14,
respectively, in Section 5.2). In other words, by looking at the error profiles in Figs. 15–
17 we cannot, generally speaking, say conclusively what part of it is due to the interior
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FIG. 15. Convergence of the solution to Eqs. (39), (38) with the ABCs to the exact solution (25) forP0 = 0.9
using the second-order scheme (26).

truncation error and what part may be coming from the imperfections at the boundary.
As such, in making a conclusion that the ABCs in this case perform practically as well
as they did in the previous cases, we rely on the experimental observation of temporally
uniform convergence, as well as on the fact that the actual error levels in Figs. 15–17 are
only slightly higher than the respective levels in Figs. 8–10. This is expected, because
the results in Figs. 8–10 correspond to numerically reproducing the same exact solution
ϕ(r, z, t) given by (25) with the help of the ABCs of Section 4 but applying them to the
original constant–coefficient wave equation (19a) inside the domainS(t) as well.

Similar conclusions as to the convergence and quality of the numerical solution can
be drawn for the caseP0 = 0.99 from looking at Figs. 18–20. From the qualitative

FIG. 16. Same as Fig. 15 for the second-order scheme (27).
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FIG. 17. Same as Fig. 15 for the fourth-order scheme (28).

considerations above it follows that this case is supposed to be more difficult to compute,
because the reduction in the speed of sound toward the center ofS(t) is more significant. In
practice, this is manifested by noticeably more oscillatory error profiles, although we still
clearly see that there is no deterioration of the solution in the long run. Besides, the actual
levels of the error are somewhat higher compared to the corresponding curves in Figs. 15–17.
This is also expected because the numerical dispersion insideS(t) is supposed to be higher.

5.4. Implementation Notes

The foregoing algorithm of lacunae-based ABCs has several parameters that need to be
tuned appropriately to obtain the best possible results. Most of the flexibility associated with

FIG. 18. Convergence of the solution to Eqs. (39), (38) to the exact solution (25) forP0 = 0.99 using the
second-order scheme (26).



754 RYABEN’KII, TSYNKOV, AND TURCHANINOV

FIG. 19. Same as Fig. 18 for the second-order scheme (27).

the algorithm resides in constructing the multipliers and artificial near-boundary sources
needed for computing the ABCs (Section 4), as well as in choosing the parameters of the
lacunae-based integration (Section 3). We have not yet conducted a comprehensive study
of how the corresponding parameters affect the numerical procedure and as such, will only
outline here some general trends.

As mentioned before, the multiplier has to be smooth in the transition region; see Figs. 6
and 7. Otherwise, lacunae of the continuous solution will not be reproduced sufficiently
accurately in the discrete solution of the auxiliary problem (essentially because the scheme
will lose consistency; see discussion at the end of Section 4.2). In most of our computations
we have used an algebraic polynomial function with four continuous derivatives for multi-
plier, and the extent of the transition region was about 10 grid cells. This has always been

FIG. 20. Same as Fig. 18 for the fourth-order scheme (28).
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sufficient for the second-order schemes. In other words, we could always obtain the tem-
porally uniform second-order convergence with these settings, although we did not check,
for example, whether or not it was possible to further reduce the extent of the transition
region. As concerns the fourth-order convergence, we did see situations when the previ-
ous settings turned out somewhat insufficient (e.g., in Section 5.2). This occurred mostly
when going from the medium grid 128× 256 to the finest grid 256× 512. To maintain
the convergence rate in this case, we had to use a wider transition region (15 cells) and/or
a smoother multiplier (five continuous derivatives). This indicates that in general the al-
gorithm of lacunae-based ABCs is sensitive to the smoothness of the multiplier, as it is
supposed to be. However, this sensitivity does not actually manifest itself before the error
reaches sufficiently low levels. As such, in practical computing one will most likely be able
to use rather narrow transition regions, as well as multipliers with limited smoothness.

With regard to choosing the parameters of the lacunae-based integration (see Section 3),
there is at least one important observation that has been made experimentally. In theory, the
contribution of a given fragment of the RHS can be subtracted from the overall solution as
soon as the time intervalTint has elapsed since its inception. In practice, it has been found
useful to introduce the so-called aft front time gapδ, i.e., allow a little extra time for the
waves to propagate outward. This implies choosing a somewhat larger value for the period
Z compared to the necessary minimum given by (9) so that by the time of subtraction, which
is Tint + δ > Tint, the reflected waves will not have started reentering the domainS(t) yet.
Moreover, we can choose to introduce the actual front time gap as well, i.e., increasingZ
even further, so that by the time of subtraction of a given contribution the corresponding
reflected waves will still be at a (small) distance fromS(t) rather than right next to its
boundary. Experimentally, we have found that the aft front time gap affects the quality of
the solution more strongly than the actual front time gap. However, the quantityδ in all our
simulations was sufficiently small anyway, about 4% ofTint, and most likely it could be
reduced even further.

One important issue yet to be discussed is computational complexity of the proposed
ABC algorithm. As mentioned before, the complexity of the original lacunae-based inte-
gration discussed in Section 3 is linear with respect to the grid dimension, provided that
the basis finite-difference scheme is explicit. We should emphasize that there are no hidden
“preparatory” expenses that are not included in this estimate. The same linear complex-
ity estimate will obviously extend to the case of the lacunae-based ABCs of Section 4.
Compared to the naive time marching integration on the domainS(t) (if it were possi-
ble without the ABCs), the overhead associated with the ABCs is directly proportional to
the number of grid nodes in the exterior part of the auxiliary domain (i.e., outsideS(t)). The
corresponding proportionality coefficient is not large. It is determined by the stencil of the
corresponding finite-difference equations (26), (27), or (28) and should also account for
the fact that the contribution of each element of the partition (11) has to be recomputed
once on the exterior domain. We emphasize though that this overhead cannot be regarded as
a pure penalty because the ABCs of Section 4 deliver a unique set of computational capabil-
ities (namely, reflection error below the truncation error and the nondeteriorating property
for a variety of cases, including that of the accelerated motion) that simply could not have
been achieved if the problem onS(t) were integrated, e.g., with some local inexpensive
artificial boundary condition (see the review [2]).

We reiterate, however, that the key property of the lacunae-based ABCs of Section 4 is
not so much that the associated computational cost is proportional to the grid dimension,
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but rather that it is fixed and bounded; i.e., it is not going to increase as the time elapses.
Clearly, this property, delivered along with the superior accuracy of the numerical solution,
is crucial in the framework of long-term computations. We also stress that the ABCs have
been specifically designed to handle continuously operating sources, and all numerical
demonstrations of Section 5 were set up to experimentally corroborate their performance
in this case. There is, of course, a variety of cases that have not yet been included in the
scope of the proposed methodology. In particular, those are multiply connected domains
and implicit time-stepping schemes. Both will be considered as a part of future research.

As concerns the actual CPU times required for computations reported in Sections 3.5 and
5, we can only provide rough estimates at this moment. Those times ranged from minutes to
hours to a day (the latter for the fourth-order scheme on the finest grid, which required about
250, 000 time steps) on a single-processor DEC Alpha EV6 500 MHz desktop workstation
running a Digital UNIX, version 4.0E, operating system. We should mention, however, that
at a later stage of development of the ABC algorithm, which would be closer to production
computations, it will certainly make sense to report the precise CPU times along with the
theoretical asymptotic estimates of complexity with respect to the grid dimension. At the
current proof-of-the-concept stage, we are not doing that for the following reasons. First
and foremost, our current goal was to design the algorithm and experimentally demonstrate
its fundamental properties, with the emphasis on the high accuracy (at least as good as that
of the interior discretization) and nondeteriorating long-term behavior with nonincreasing
costs, rather than to try and obtain maximum a numerical speed for any given computation.
As such, the codes that we have used were not optimized for performance in any respect,
and the corresponding CPU times (see above) are by far not the best possible, and therefore
not representative. Moreover, a direct comparison of execution times with other results for
the wave equation available in the literature would, at the current stage, be problematic
at best for the obvious reasons of platform, software, and implementation dependence.
Finally, any comprehensive comparison, even if it is performed on the same platform, etc.,
should address not only the CPU time, but also the overall balance between the accuracy
and universality of a given technique, and the speed of numerical computation (see the
review [2]). By now, we have been able to show that the capabilities of the proposed ABCs
are in many respects unique (no reflection beyond the level of the interior truncation error,
applicability to the case of accelerated motion), and the quest for the actual numerical
performance will be one of our future tasks as well.

6. CONCLUSIONS

We have constructed and tested the algorithm for setting highly accurate global artifi-
cial boundary conditions in the problems of time-dependent wave propagation. The key
building block of the new ABCs is a special nondeteriorating numerical procedure that
has been developed previously for the long-term integration of wave-radiation problems.
The latter procedure is based on the presence of lacunae (aft fronts of the waves) in the
three-dimensional wave-type solutions. The resulting lacunae-based ABCs are obtained
directly for the discrete formulation of the problem and can complement any consistent
and stable finite-difference scheme. Doing so requires neither a rational approximation of
nonreflecting kernels nor discretization of the continuous boundary conditions is required.
The extent of temporal nonlocality of the new ABCs appears fixed and limited, and this
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is not a result of any approximation but rather a direct consequence of the fundamental
properties of the solution. The proposed ABCs can handle artificial boundaries of irregular
shape on regular grids with no fitting/adaptation needed. Besides, they possess a unique
capability of being able to handle boundaries of moving computational domains, includ-
ing the case of accelerated motion. We have conducted a series of numerical experiments
that would corroborate the theoretical design properties of the algorithm. The experiments
included computation of unsteady wave-radiation solutions over long time intervals. In all
our experiments the ABCs could always keep the level of reflections from the artificial
boundary on or below the level of truncation error for the interior discretization for as long
as the computation was run. Besides the classical wave equation that we have analyzed in
this paper, the proposed technique may find applications in computational acoustics and
computational electromagnetics.
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