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We construct global artificial boundary conditions (ABCs) for the numerical sim-
ulation of wave processes on unbounded domains using a special nondeteriorating
algorithm that has been developed previously for the long-term computation of wave-
radiation solutions. The ABCs are obtained directly for the discrete formulation of
the problem; in so doing, neither a rational approximation of “nonreflecting kernels”
nor discretization of the continuous boundary conditions is required. The extent of
temporal nonlocality of the new ABCs appears fixed and limited; in addition, the
ABCs can handle artificial boundaries of irregular shape on regular grids with no
fitting/adaptation needed and no accuracy loss induced. The nondeteriorating al-
gorithm, which is the core of the new ABCs, is inherently three-dimensional, it
guarantees temporally uniform grid convergence of the solution driven by a continu-
ously operating source on arbitrarily long time intervals and provides unimprovable
linear computational complexity with respect to the grid dimension. The algorithm is
based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions
in odd-dimensional spaces. It can, in fact, be built as a modification on top of any
consistent and stable finite-difference scheme, making its grid convergence uniform
in time and at the same time keeping the rate of convergence the same as that of
the unmodified scheme. In this paper, we delineate the construction of the global
lacunae-based ABCs in the framework of a discretized wave equation. The ABCs
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are obtained for the most general formulation of the problem that involves radia-
tion of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering
aircraft). We also present systematic numerical results that corroborate the theoretical
design properties of the ABC algorithm. 2001 Elsevier Science

Key Wordsartificial boundary conditions; wave propagation; lacunae; nondeteri-
orating method.

1. INTRODUCTION

Numerical simulation of wave phenomena on unbounded domains (e.g., radiation an
scattering of acoustic or electromagnetic waves) often encounters the following w
recognized difficulty. As no computer can either handle infinite arrays of data or perfo
infinite numbers of arithmetic operations, the discrete approximation of the problem ha
be made finite (i.e., finite-dimensional). Consequently, the original infinite domain has
be truncated and special artificial boundary conditions (ABCs) have to be developed
closure for the resulting finite formulation.

The literature on the subject of ABCs is very extensive; see, e.g., review papers by Gi
[1] and Tsynkov [2], as well as another recent review by Hagstrom [3], which is gear
more specifically toward wave propagation problems. In the current study, we focus
genuinely unsteady (as opposed to time-harmonic) wave phenomena to be computed i
time domain. For this type of problem, most of the ABC research to date has been don
the framework of simple approximate local methods based, e.g., on quasi-one-dimensi
characteristics’ decomposition. These methods often appear insufficiently accurate. S
of the more accurate methods that have recently gained attention are based on the so-
perfectly matched layers; see the original publications [4—7] and reviews [8, 9]. Unfor
nately, as shown in [10, 11], these methods may give rise to instabilities of a partict
kind. The latter typically manifest themselves when integrating over long time intervals &
thus exacerbate even further the well-known problem of accumulation of error in long-te
numerical simulations.

Among other existing unsteady ABC approaches, only a very few methodologies
guarantee the accuracy that theoretically would not hamper that of the interior approxil
tion. All of these methodologies are nonlocal—see, e.g., [12—-18]—which is characteri:
of highly accurate (ideally, exact) ABCs. The techniques of this group typically involve tw
“approximating” steps, which are undertaken consecutively when building the ABCs. T
first step is the replacement of the fully nonlocal in space—time true exact boundary col
tions, which are most often written using pseudo-differential operators, with approxim
boundary conditions (still at the continuous level) that would provide for only a limite
extent of nonlocality. More precisely, this step aims at limiting the temporal nonlocality
the ABCs, which may be prohibitively expensive in computations. This can be achiev
e.g., by employing a rational approximation of the corresponding symbol (kérfiled first
step is then followed by the second step, which is the discretization of the resulting locali
continuous boundary conditions. We note that unless given special thorough attention

2In fact, a wide variety of purely local ABCs (i.e., local in both space and time) can be obtained via ratior
approximation of symbols as well. This approach has been known for two decades; see [19-21]. The general
is that the more of the nonlocal nature of exact ABCs is compromised, the less accuracy one can expect frol
resulting approximate methodology.
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discretization step may lead to accuracy loss and again cause instability (this pertain
purely local ABCs as well). We also note that all of these techniques are restricted geon
rically to computational domains of a simple regular shape, e.g., those with spherica
planar boundaries.

Our recentwork [22, 23] indicates that the issue of time-dependent ABCs may be clos
related to another problem that has been mentioned before—the accumulation of nume
error during long runs. This problem has been recognized as an outstanding questic
computational PDEs for many years, since the first systematic convergence studies
discrete approximations were conducted in the 1950. From the standpoint of pract
computing, deterioration of the solution over long time intervals can be attributed, e.
to the mechanism of either numerical dissipation or dispersion or both. Theoretically, t
phenomenon is conveniently termed as nonuniformity of the grid convergence in time, «
all conventional discrete approximations that are currently in use are known to suffer fr
this deficiency.

As our work [22, 23] suggests, the key to resolving the question of long-term err
accumulation may be in precisely following the physical nature of the original proble
when building a numerical algorithm. Namely, it is known that waves in three dimensio
have aft (or trailing) fronts. This is a manifestation of the so-called Huygens’ principle
more generally, the presence of lacunae in wave-type solutions in odd-dimension spe
Using this property, we have been able to develop a modification to any consistent
stable finite-difference scheme that approximates a Cauchy problem for the wave equc
S0 as to make its grid convergence uniform in time on arbitrarily long intervals. The unifor
temporal convergence of the algorithm has been proven theoretically along with its optir
computational complexity (i.e., linear with respect to the grid dimension). The rate
temporally uniform grid convergence, see [22, 23], remains the same as that of the orig
unmodified scheme. These results apply to the general case of moving sources of w
that operate continuously in time. As an example, we show in [23] that the linearized fl
around a maneuvering aircraft can be interpreted in this framework.

At least as important, the procedure of [22, 23] allows one to replace the original infin
domain of the initial-value problem by a finite computational domain that would facilitat
the construction of a finite-dimensional discretization. As will be seen from the discussi
in this paper, the latter replacement leads to obtaining highly accurate nonlocal unste
ABCs for combined problems that may include complex phenomena on a bounded inte
domain but reduce to the homogeneous wave equation in the far field. Similarly to the ¢
analyzed in [22, 23] the interior domain may be moving. The ABCs are built directly fc
the specific interior approximation used and in this sense can be considered its most na
extension. We emphasize that they involve neither of the two common approximating st
(rational approximation of the symbol followed by discretization) that have been mention
before in connection to some existing ABC methodologies.

We emphasize that the extent of temporal nonlocality of the unsteady ABCs that .
based on the technique [22, 23] is bounded naturally for all times because of the exp
use of lacunae. Unlike in many other methods available in the literature, this bound is
a consequence of any approximation. We should mention though that a similar idec
naturally restricting the temporal nonlocality of the ABCs by using the Huygens princip
has been proposed previously by Ting and Miksis in [24] and then further developed :
implemented by Givoli and Cohen in [25]. However, the approaches of both [24] and [2
essentially rely on approximating the Kirchhoff integral by numerical quadratures and tt
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coupling the exterior quadrature with the interior solution. (The latter can be obtained, e
by finite differences or finite elements.) In contradistinction to that, the approach that
propose is based completely on finite differences, and the notion of the Kirchhoff integ
is needed only in theory to track the aft fronts of the waves; see Section 3. Moreover,
genuine approach of [24] has, in fact, never been implemented in a practical setting, whe
the implementation of [25] required introducing additional dissipation into the scheme
suppress numerical instabilities that may arise otherwise. In contradistinction to that,
approach is specifically designed to provide long-term numerical stability. Moreover, as
ABCs are obtained directly for the specific finite-difference scheme, the issue of discretiz
the boundary conditions, which has been shown to cause problems before, simply doe:
arise in this framework. Besides, the new ABCs possess full geometric universality, i.e.,
handle any shape of the external artificial boundary with equal ease on a regular Carte
grid with no fitting/adaptation required and no accuracy loss caused.

The rest of the paper is organized as follows. In Section 2 we give a concise overv
of the algorithm. In Section 3, we provide a brief outline of the phenomenon of lacun
in wave radiation solutions and show how one can use those to obtain a nondeteriore
algorithm for long-term numerical integration of the corresponding problems. In addition
the theoretical justification, we include in this section several computational demonstrati
of the properties of the aforementioned algorithm. In Section 4, we describe in detalil
construction of the global finite-difference lacunae-based ABCs and briefly comment
how the proposed construction fits into the general framework of discrete time-depenc
boundary conditions developed by Ryaben’kii in [26]. Section 5 contains an extensive
of numerical experiments with the new ABCs for the wave equation. The experime
are conducted for finite-difference schemes of different orders of accuracy, different Ie
of motion for the waves’ sources (uniform, as well as nonuniform), and different interi
models that require closure by the homogeneous wave equation in the far field. T
experiments corroborate the theoretical design properties of the ABC algorithm. Sectic
is a summary of conclusions.

2. OVERVIEW

Let S c R3 be a finite fixed domain, and consider the following combined initial-valu:
problem onR? x [0, +00) with respect to the unknown functign= ¢(x, t):

<D(Xstv(ﬂ7vfﬂ»(ﬂt»-..)=0, XGS,IZO,
o —CPAp = 0, xeR:\St>0, 1)
p(x,00 = ¢(x,00 =0, xeR>

Problem (1) represents a typical situation. There is some sufficiently complex proc
going on insideS; this process is described by the differential equatiogx, t, ¢, Vo,

¢, ...) = 0, which may, for example, be nonlinear. In the far field, i.e., outSdéhe
governing equation simplifies and reduces to the standard linear constant—coefficient v
equation. The initial conditions are assumed homogeneous for simplicity. As the w:
equation is also homogeneous everywher®drS, t > 0, the formulation (1) essentially
means that the waves generated in§ldball be radiated in all directions toward infinity, and
that there will be no incoming waves with respect to the re§ofhe objective is to build a
feasible numerical procedure for computing the solution of problem (1). For that, the ove
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infinite domain of the problen®?, has to be truncated. A natural way of doing thatis to try tc
replace the entire exterior linear part of the problem by equivalent boundary conditi®)s at
so that the actual computations can be performed only on afinite domain. The correspon
boundary conditions are called the ABCs. The ABCs will equivalently substitute for tt
wave equation outsid8 and as such, to construct them we will not need to know muc
about the nature of the problem insi8eOne thing, however, is important—we will need
to assume ahead of time that the overall problem (1) is uniquely solvable and well pos
Let ¢ = ¢(x,1) be a solution to (1). Introduce an auxiliary functign= w(x), which
should be smooth oR® and would satisfy.(x) = 1 forx € R*\ Sandu(x) = 0forx € S,
whereS isasmallerdomairx € S ifandonly ifx € Sand distx, 3S) > ¢. In other words,
w is supposed to have a constant value of zero “well insijeind a constant value of one
everywhere outsid8 and undergo transition from zero to one in a (narrow) region of widtl
€ next to the boundarg S from the interior side. Let us now multiply(x, t) by w(x) and
apply the linear constant—coefficient wave operator of (1) to the product everywhere
RR? for all t's. We denote the resuti(x, t) = (¢u) — C2A(pu). Obviously,g(x,t) = 0
for x € S and anyt, becausg: = 0 on S, and alsagy(x, t) = 0 for x € R3\ Sand anyt,
because. = 1 onR*\ Sand consequently, the functigm coincides there with the solution
¢ of the homogeneous wave equation. The only region whétgt) may differ from zero
is the transition regiois\ S .
Because of the unique solvability of the Cauchy problem for the wave equation, one
easily see that the solutign= ¢(x, t) to the auxiliary problem driven bg(x, t),

G — AP = g(x, 1), xeR3t>0,

2
P(x,0) = @ (x,00=0, xeRS @

coincides with the solutiop = ¢(X, t) to problem (1) everywhere on the exterior domain
R3\Sforall t: $(x, t) = ¢(x, t), x € R\ S. Consequently, if we knew the solutigrix; t)
to problem (2), we could use it to supply the required boundary data, i.e., closure, for
equation®(x, t, ¢, Vo, ¢, ...) = 00onS, and as such could obtain the desired ABCs.

Thus, the original problem has been decomposed into a finite-domain interior probl
for the equationb (x, t, ¢, Vo, ¢, ...) = 0 onSonly, which is obviously not complete by
itself, and the auxiliary problem (2) that needs to be solve@®dto provide the missing
boundary data for the aforementioned interior problensdn its own turn, the source term
of the auxiliary problem (2) is calculated through the solution of the interior problem. /
first glance, however, we accomplished nothing by introducing this decomposition, beca
the auxiliary problem (2) is still formulated on an unbounded domain and therefore can
be used directly for computing the ABCs.

The key difference though is that the auxiliary problem (2) is linear, and has const:
coefficients, throughout the entire space. To solve this problem efficiently, we are go
to use the fact that the waves governed by the linear constant—coefficient wave eque
onR? have sharp aft fronts (a manifestation of the Huygens’ principle or alternatively, tl
presence of lacunae, in the solutions to the wave equation). Assuming that theggautge
in (2) operates continuously in time on a compact don&ilet us partitiong(x, t) into a
collection of elements

gt => gt T) 3)

j=0
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sothatvj:suppgj(x,t, T) € Sx [(j —14+0))T, (j + 14 oj)T]. In other words, every
g;(x, t, T) is supported only on a finite time interval of fixed length,avhereT is a
parameter; another parametercontrols the overlap size of the partitiqh — o)T so
thatg;(x,t, T) can be taken to be smooth, which will be important from the standpoi
of consistency of the discrete scheme. Because of the linear superposition principle,
solutiong (X, t) to problem (2) can now be reconstructed as a sum

P0Gt =) j(xt,T), @

j=0

where eacly; (x, t, T) solves the Cauchy problem driven by the correspondirig, t, T)
from (3).

The series (4) that represents the solution to problem (2) is formally infinite. As, howev
we are interested in knowing this solution only 8nit is easy to see that for every given
moment of time, only a finite fixed number of terms of (4) will contribute to the solution.
Indeed, because of the causality for any givére contribution of all thosg; that “kick in”
atthe moments of time later thans obviously zero. In addition to that, the contribution of all
thoseg; that are sufficiently far behind in time is also zero. To quantify what “sufficiently fa
behind” means, we note that the waves generated ishig@nyg; will travel with the speed
¢, and asthere will be asharp aft frontinitiated at the moment wheeaases to operate, these
waves will leave the domain completely no later than after the time intédiein S) /c has
elapsed since the terminationgf Clearly, the aforementioned time interval determines th
“lifespan” of the waves on the domaBand depends only on the size of the domain and th
speed of wave propagation. Consequently, for a givany source elemegf thatis retarded
in time to the extent of more than this lifespan will no longer contribute to the solution. /
such, there will only be a finite fixed number of nonzero terms in the series @Jjarany
givent, and what is most important is that this number will not depend on the dctual

Moreover, the same argument based on the Huygens principle implies that every c
ponenty; of the overall solution (4) needs to be consideredaturing a finite, fixed time
interval only; this interval is obviously equal to the aforementioned lifespan of the waves
Splus the duration 2 of the action of the sourag; itself. Crucial to constructing the ABCs,
this argument also implies that during this intergdemS)/c + 2T, the waves generated
by a giveng; can travel in space no further away frofthan a certain distance in any
direction. This distance will again be finite and fixed and will be determined only by tt
geometry of the problem and the speed of wave propagation. Therefore, we can conc
that every componenyt; of the overall solution (4) can be computed on a bounded doma
of a constant size. This size, which is the same for all componrgntsill be larger than
the original size ofS, but it will be fixed from the very beginning and will not increase as
the timet elapses.

In other words, the auxiliary problem (2) can actually be solved on a finite doma
which means it can be used efficiently to provide the closure for the interior prablem
t, o, Vo, ¢, ...) = 0,orinotherwords, obtainthe ABCs 6%. These ABCs will, generally
speaking, be nonlocal in both space and time. The nonlocality essentially means tha
boundary conditions oS cannot be expressed by a simple pointwise formula; they shou
rather be regarded as operator relations that incorporate the values of the solution all ove
boundary, and the algorithm proposed in this paper is a way to actually compute the ac
of the operator involved. A key advantage of our approach is that the temporal nonloce
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of the proposed ABCs will be of a “benign” nature because it will not increase as tl
time elapses (see below). Moreover, for every given moment oftiithe solution of the
auxiliary problem will be composed of a finite fixed number of componeptsnd each
of the latter will need to be considered as a part of the overall solution only during a fin
fixed interval of time. Consequently, when the auxiliary problem is integrated numerical
the stability constant will depend only on this finite fixed time interval, rather than on tt
overall time of integration, which can be arbitrarily large. As such, we conclude that t|
numerical integration procedure for problem (2), which is based on the partition (3), (4) &
the Huygens principle argument, will converge uniformly in time as the grid size decreas
provided that the scheme used for the integration is consistent and stable in the convent
sense. Therefore, we can expect that the ABCs constructed through the decompos
of the original problem (1) into the interior pa&t(x, t, ¢, Vo, ¢, ...) = 0 and auxiliary
problem (2), with subsequent lacunae-based integration of the latter, will have good stab
characteristics. This is indeed corroborated by the numerical experiments of Section 5

In practice the two problems are, of course, solved concurrently. Both are integratec
a discrete scheme; one time step of the interior procedure is followed by advancing
right-hand sidegy(x, t) by one more step, and then by making one lacunae-based integrat
step of problem (2). Then, the entire cycle repeats itself. We reemphasize that due tc
lacunae the extent of temporal nonlocality of the ABCs appears fixed and limited. Inde
only a finite fixed number of partition elemergg need to be taken into account at every
given moment of time. Moreover, the resulting ABCs appear universal from the standpc
of geometry. In other words, the grid used for integrating the auxiliary problem (2) can
regular and shall by no means fit the geometry of the interior do&ain

We will now proceed to describe the algorithms of lacunae-based integration and
ABCs in detail. In so doing, we will consider a more general case of the moving d@nain

3. LACUNAE AND NONDETERIORATING NUMERICAL INTEGRATION

3.1. Lacunae of the Wave Equation

We consider a Cauchy (initial-value) problem for the three-dimensional wave equatit
X = (X1, X2, X3),

Bp (0% 0% 3%
— —C" | —5 — —F =fX,t,t20, 5a
at2 (axf+ax§+ax§> D (5a)
¢
0= — =0. 5b
@li=o0 ot |, (5b)

(The limitation of having homogeneous initial conditions (5b) can be alleviated, seeg|22, 2
The problem (5a), (5b) is solved on the dom&ii) c R3, which has finite diametat for

all timest > 0; other than that the domalB(t) may travel in space according to an arbi-
trary law of motion except that its maximum spdets required to be “subsonick < c.
The solutiong(x, t) is driven by the continuously operating sourté, t), f(x,0) =0,
and we require thatt > 0: suppf (x,t) € S(t). In other words, we study the radiation of
waves by a source, which is compactly supported in space for all times. The solution i
interest for us also on a compact domain, which we &¢l); it fully contains the source
and follows its motion if there is motion. This is a simplified model for many interestin
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physical phenomena that are more complex in their nature. As we shall see, this mod
very useful in constructing the ABCs for a variety of problems.
For every(x, t), the solutionp = ¢(x, t) to problem (5a), (5b) is given by the Kirchhoff

integral
1 f(&.t—o/c)
oot = oo [[[ FE 0B ©)

o=ct

whereg = (&1, &, £3), 0 = Ix — &l = /(X1 — )2 + (X2 — £2)2 + (X3 — £3)2, and d¢ =
d&d&xdés. If we assume for a moment that the right-hand side (RHS) t) is compactly
supported in space—time on the dom&@irc R x [0, +00), then formula (6) immediately
implies that

o(X,t)=0 for (x,t) € ﬂ {X]Ix—& <ct—0), t >0} ©)
(€.0)€Q

The region of space—time defined by formula (7) is called lacuna of the sojutiop (X, t).
This region is obviously obtained as the intersection of characteristic cones of Eq. (5a) c
the vertex of the cone sweeps the support of the RHS; $uppQ. From the standpoint
of physics, the lacuna represents that part of space—time where the waves generated |
sourcesf, suppf C Q, have already passed and the solution has become zero again. (So
times, the name “secondary lacuna” is used to distinguish it from the primary lacuna, wk
is the area where the waves have not reached yet.) The phenomenon of lacunae is inher
three-dimensional. The interior surface of the lacuna represents the trajectory of aft (t
ing) fronts of the waves. The presence of aft fronts in odd-dimension spaces is know
the Huygens principle, as opposed to the so-called wave diffusion, which takes plac
even-dimension spaces.

3.2. Computation with a Compactly Supported Source

Assume now that the moment of inception of the soudree t) istg (in particular it may be
to = 0); atthis moment the doma8ity) of the RHST (x, t) occupies a position in space that
is schematically represented by the interval [ A;] of sized on Fig. 12 Assume also that
by the time; > tp this source ceases to operate, which makes the RHS of Eq. (5a) compa
supported in both space and time; sUpg Q = {(x,t) | X € S(1), tp <t < t1}. Clearly,
by the timet; the domainS(t;) can be displaced from its initial location no further than
the distancek(t; — to) is each direction, which is schematically represented in Fig. 1 b
the boundaries of the intervaB{, B,] of sized + 2k(t; — tg). Starting fromt = t; no new
waves will be generated, and those generated prigntd! continue traveling in space and
thus will eventually leave the domat¥(t) completely, because their speed of propagatiol
c is higher than that of the domaik, The moment, when this happens, i.e., when the
solutiong (X, t) again becomes zero @it), is easy to calculate; see Fig. 1. By this moment
the domairS(ty) can travel no further than the intervél{, C,] of sized + 2k(t, — to), and
we need to assume that the aft fronts will also be exactly at the boundaries of this inte

3 Throughout this section we will be using schematic one-dimensional illustrations always keeping in mi
however, that the actual problem is three-dimensional.
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FIG. 1. One-dimensional schematic representation for the fronts of the waves generated by a compe
supported source.

att = t, which immediately yields

d+ (t1 —to)(c+Kk)

eX, 1) =0, for xe Sit),t >t =ty + p—

8
Estimate (8) is fundamental. It essentially says that once we need to calculate the s
tion ¢(x,t) on S(t) and the sources are compactly supported in space—time,fsgpp
Q{(x,t) | x € S(1), to <t < t1}, then we may stop the calculationtat t, because af-
terward the solution ors(t) will be zero anyway. This means, in particular, that if the
solution is calculated using a discrete method, e.g., a finite-difference scheme, ther
new error will be accumulated aftee= t,. The constants in both consistency and stability
estimates of the scheme (see [22, 23] and below for detail) will now depend on the ti
interval T = 4+U—0)C+ rather than final tim@gna, which for the case of a compactly
supported RHS simply becomes immaterial.

Besides, once we stop the calculatiort,at ty + Tin, we realize that during the time
interval T that has passed since the beginnirgty, no waves could have traveled in space
further than the boundaries of the intervBl;| D;] of sized + 2cTj,; see Fig. 1. Beyond
this region the solution is zero because this is the area of the primary lacuna. Theref
even though the original problem was formulated on an infinite domain, we can, in fa
calculate the solution on a finite domaiB{, D,] of size d + 2cTi,; with zero external
boundary conditions (of the Dirichlet type).

The transition from the infinite domain to a finite domain does not, obviously, come “
no charge.” One can rather say that it comes at the expense of having the computati
domain D;, D,] larger than the actual domain of interéXt). However, the size of the
“redundant” portion of P;, D,] can be further reduced by observing that all we have tc
do is make sure that by=t,, i.e., by the moment the last waves generatedf k¥, t),
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suppf C Q, leave S(t), no new waves can ent&(t). This can be guaranteed either as
indicated previously, by placing the outer boundary sufficiently far away so that no way
from f(x,t), suppf C Q, can even reach it untll =t, =ty + Tjy; Or alternatively, by
placing it closer and thus allowing for reflections, but still not too close so that no reflect
waves can come back, i.e., reéi), byt = t,. The size of the new, smaller, computational
domain [E;, Ey] with reflecting outer boundary, see Fig. 1, can be estimated easily. T
minimum sizeZ, see Fig. 1, is found by requiring that the reflected waves, which trav
with the same speegbut in the opposite direction, reach the boundary®f [C;], i.e., the
utmost possible location d(t,), by the exact same moment of tirhe= t, when the aft
fronts leaveS(t). This immediately yields

Z=d+ K+0)Tn. 9)

By comparing the value oZ from (9) with the size of D1, D], which isd + 2cTiy;, we
conclude that the extra size of the computational domain begtaaeh be reduced by up to
a factor of 2 (wherk = 0) in each coordinate direction.

We also note that in fact any well-posed boundary condition can be specified at the refl
ing outer boundary offf;, E;]. The reason is that this boundary is intentionally positione
so that the reflections are not going to have any effect on the solution idiganyway.

A particularly convenient way to treat the boundary Bf | E;] will be to set the periodic

boundary conditions there. In so doing the three-dimensional rectangular domain becc
a three-dimensional toroidal surface (the opposite faces of the rectangle are identified
one another) and we only have to keep in mind that the reflected waves will now need t
interpreted as those that leave the domain on one side and enter it from the opposite
This new interpretation obviously brings no change to the foregoing considerations that
to the size estimate (9). However, for the case of a continuously operating traveling sot
that we analyze below, periodicity implies that the motion of the source can also be form:
considered on the toroidal surface, which makes the computational setup much simple

3.3. Computation with a Continuously Operating Source

Both foregoing observations—finite time intervigl; and finite spatial domair;, E;]
needed for calculating the solution driven by the sourteés t): suppf € Q = {(x, t) |
X € S(t), to <t < t1}, on the domairS(t)—are crucial for the original case of a contin-
uously operating sourcé(x, t): suppf C {(x,t) | X € S(t), t > 0}. In this case we first
take a parametélr > 0 and introduce a smooth, even, compactly supported fun€tioy
t € R, of a “hat” type,

Ot)=0, |t|>T,
Ot) = 6(-t),
Ot)=1l te[-oT,0T], 0<o0 <1, (20)

1 1
@< ;GT—i—t):l—@( —;UT—t), teloT,T],

which obviously generates a partition of unity,

1= 0t-1A+0)Tj). t=0
j=0
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with the overlap siz€1l — o) T. Then, we represent the right-hand site, t) of Eq. (5a)
in the form

foh=fxtd Ot—1A+0)T))

j=0

=> 0t-A+)THfx =Y fxtT). (11)
j=0

j=0
Clearly, for eachfj(x,t, T) =0t - (1+)T)Hf(x,t),j=0,1,..., we have
suppf; (X, t, T) S {X,t) I xe SO, (J —14+0oDT <t <(j+14+0)T}. 12)

Due to the linear superposition, the overall solutjar, t) of Eq. (5a) will be given by the
sum of individual contributions fron; (x,t, T), j =0,1,...,

P = gj(x,t.T), (13)

j=0

where each contributiop; (x, t, T) solves the subproblem

320 ,( %] % 0%
— —C =fi(x,t, T),
at2 ax2 * ax2 * x5 it % 14)
99| .
@jlt=(j-140j)T = a_tj =0, j=012,....
t=(j—1+o)T

Notice thateach;(x,t, T),j =0, 1,..., canbe calculated absolutely independently of the
others and that the corresponding source t&(r, t, T) is a function compactly supported
in both space and time; see (12). Consequently, according to (8), if we inté&yed
thas(j —1+4+0j)T and(j + 1+ )T, respectively (see Fig. 1), then we can conclude
that everygp; (x, t, T) of (13) needs to be calculated only during a finite interval of time
Tine = $H2TCER 1t is important to realize that this interval does not depend on the actu
moment of time.

Moreover, even though the series (13) is formally infinite, it is easy to see that for a
t > 0,x € S(t), it contains only a finite fixed number of nonzero terms. First of all, becau:s
of the causalitypj(x,t, T) =0forx e St) if t < (j —140¢j)T. In other words, for a
given moment of time, the contribution of all thosd; (x,t, T) that are active only at
subsequent moments of time is obviously zero. A somewhat less trivial observation is 1
because of the lacunae the contribution of the “sufficiently retarded” téy(rst, T) to the
overall solution at a given time levelwill be zero as well. More precisely,; (x,t, T) =
forx e S()if (j —1+4+0))T <t — Tiy. This follows immediately from (8) assuming that
to=(j —140j)T andty = (j + 1+ oj)T. Consequently, instead of (13) we can write

e =Y @i(x.t.T)., xe S, (15)
j=p1

wherep; = [ (5 4+ )], p2 = [+ (+ + D], and [-] stands for the integer part. The

expressions fop; and p, indicate that we will always have eithei = p, — [(1+G)T] or
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pL= P2 — [(1I?;>T — 1. Therefore, the number of terns= p, — (p1 — 1) in the sum

(15) will never exceedif“—a‘ﬁ] + 2. As Ty does not depend dnwe conclude that neither
does the foregoing upper bound fpr As such, the number of terms in the sum (15) car
always be considered finite and fixed. Altogether we obtainthat 0 the solutionp(x, t),
X € S(t), is composed of a finite nonincreasing numpear additive terms, and each of the
latter needs to be taken into account only during a finite nonincreasing interval ofifime
From the perspective of numerical computation, the latter consideration translates
temporally uniform grid convergence of the discrete algorithm. Indeed, assume that
are integrating Eq. (5a) by means of a finite-difference scheme with the order of accur
O(h%), whereh is a general notion for the grid size and> 0. Then, the discrete solution
»™(x, 1) converges to the continuous solutiptx, t) as the grid size decreases,

™ x.t) — p(x. B < K -h%, t [0, Tinal. (16)

whereTiing is the total integration time. Inequality (16) is a generic convergence estimate
holds provided that the RHE(x, t) of Eg. (5a) is sufficiently smooth. A detailed discussion
on the smoothness requirements faix, t) can be found in [23], along with the specific
consistency/stability/convergence estimates in the norms that would take into accou
particular smoothness levél.

The constanK in inequality (16) does not depend on the grid. It is, however, know
to depend on the actual RHSX, t), as well as the final tim&n,: K = K(f, Tina). The
dependency df onTiing is typically a growth, and sometimes this growth may be rapid. Thi
means that even though on any fixed intervallia] the scheme converges as— 0;
to obtain the same level of accuracy on a largerTj,] one may need to take a finer
overall grid ahead of time. Thus, the convergence appears temporally nonuniform. On
language of practical computing, this phenomenon can be interpreted as the accumul;
of numerical error over long runs. This issue has been long acknowledged in the litera
as unresolved.

The situation changes dramatically if, instead of the straightforward time-dependent ir
gration, we first use the foregoing lacunae-based representation (15) of the sp(ution
In so doing, for each = pa, ..., p2, we still integrate the corresponding subproblem (14
using the same finite-difference scheme as before. However, the convergence estima
the scheme then becomes

o™ x, 1, T) — gj(x, t. T)|| < Kj - he,

: o : 17)
xeSt), tel[(j—1+oT,(J —1+0)T + Tind-

A very important circumstance is that unlike in estimate (16), the constant; in (17)

for eachj depends ofTiy; rather tharTina: Kj = K (fj, Tint). Keeping in mind that each

<p}h)(x, t, T) can be computed independently of the others, and using linear superposi

(formula (14)), we then easily obtain instead of (16)

o™ x,t) —px, O] < p-K-h*, xeSt), t=0, (18)

4 Smoothness of the source terms will also be important in constructing the lacunae-based ABCs; see Secti
and 5.
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whereK = K (f, Tin). Note thatpis fixed and does not increase witandK now depends
on Ty rather thanTsna, WhereTiy is also fixed and does not increase withrherefore,
estimate (18) implies temporally uniform grid convergence of the discrete lacunae-ba
algorithm on arbitrarily long time intervals or in other words, for 0. A detailed formal
proof of this result that, again, involves specific norms, can be found in [23]. Here v
only need to add that for each inequality (17) to hold, the correspongipgt, T), j =

p1, - .., P2, has to possess the same regularity as that required for the original schem
converge. This explains why choosing the partition (11) smooth with overlaps was v
important.

From the standpoint of practical computing, temporally uniform grid convergence ir
plies that the numerical error will not get accumulated beyond some predetermined bo
for as long as the computation needs to be performed, and once the grid is refined
aforementioned bound will also drop in accordance with the specifia?été). This is
clear because when the calculation is stopped for a givemté?l(]x, t, T) after the interval
Tint has elapsed, the error will not be accumulated any further, and the number ofterm
that need to be taken into account is fixed and nonincreasing. Thus, we have obtain
nondeteriorating numerical algorithm for integration of the wave equation over arbitrar
long times. Let us emphasize that it can be built as a modification of any consistent :
stable finite-difference scheme, and that it preserves the original rate of convergence o
scheme while making the convergence uniform in time.

Besides, let us assume, for example, that the original finite-difference scheme has i
computational complexity with respect to the grid dimension, which is typical for explic
schemes. Then, itis easy to see that the modified lacunae-based algorithm will also have
ear computational complexity with respect to the grid dimension. Indeed, this immediat
follows from the fact that each termfh’ (X, t, T) is computed using the original scheme on
a compact domain of sizé (see Fig. 1) during a finite fixed interval of tinTg,, and the
number of termg is, again, fixed and nonincreasing. We should note that for the type
problems that we are studying linear complexity with respect to the grid is, in fact, optim
i.e., unimprovable.

3.4. Computation Using Continuous Time Marching

The following, and last, step in building the lacunae-based algorithm for long-term n
merical integration of the wave equation is to realize that for implementing formula (1
we do not necessarily need to compute each gy, t, T) independent of the others.
Instead, we can implement the algorithm in a way similar to the standard time march
by means of a finite-difference scheme. For that, we will need to use the aforementio
periodic boundary conditions on the outer boundaries of the auxiliary dorBairkL]; see
the end of Section 3.2 and Fig. 1.

The first key observation that we make here is that once the motion of the wave source
well as the propagation of waves themselves, is considered on a three-dimensional tort
surface, rather than on the genui& then for every portion of the RH§ (x,t, T)itdoes
not really matter where on the period this source is located, or where it starts its mot
from, atto = (j — 1+ 0j)T. It does not have to be exactly “in the middle” as shown in
Fig. 1, because all locations on the period (i.e., toroidal surface) are equivalent. All !
have to worry about is that by the timg= (j — 1+ oj)T + Tiy; the waves generated
by fj(x,t,T), see (12), will have left the domaifi(t), and that no waves could have
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reentered this domain durindy[t]. And this will be exactly the case because the size
Z =d + (k4 c)Tint, see (9), has been chosen sufficiently large to provide for that. Sin
we always assume (for simplicity) that the peridds the same in all coordinate direc-
tions, then we only need to formally considgi(X, t, T) instead off;(x, t, T) and accord-
ingly, ¢; (X, t, T) instead ofy; (x,t, T), whereX = (X1, %2, %3), and% = x; —[$]Z,i =
1,23

Next, we shall analyze formula (15) from a slightly different point of view. To begir
with, we notice that in the initial stage of computation, i.e., whda small, the lower
summation limitp; may turn out negative. Basically, it does not create any inconsisten
and does not cause any problem becafise t) = 0 fort < 0 anyway. In fact, we can
simply disregard all negativg’s in the sum (15) for smali’s and initially consider the
summationzfio @j(x,t, T) instead of (15). “Initially” here means till the actual expres-
sion p; = [ljg t‘TJ + 1)] becomes positive. It is easy to see that the computation i
this initial stage is equivalent to the conventional time marching of the wave equati
(5a) on the domainH;, E;] of size Z (see Fig. 1) with periodic boundary conditions.
Indeed, all we do here is simply take into account one component of the sbuidfe
ter another. Due to linear superposition, this amounts to the continuous integration of
wave equation driven byf = Z}’io fj from t =0 till the actual timet. We also note
that the duration of the initial stage is, obvioushy:. And the periodZ, see (9), has
been chosen sufficiently large so that for the time interval of lefigtithere will be no
difference in the domaiis(t) between the solutiop(x, t) computed in the periodic set-
ting and the solution that one could have possibly computed with no periodization (:
Section 3.2).

As soon as the time intervaly = % has elapsed since the inception momen
t = 0, the computation enters its regular (as opposed to initial) stage. This regular st:
which can, in fact, be continued for as long as necessatry, is characterized by the pos
values ofp; (the first positive value is obviouslg; = 1) and finite nongrowing number
p = p2 — (p1 — 1) of terms in the sum (15).

On the regular stage of the algorithm, we continue marching Eq. (5a) with perio
boundary conditions in space. Obviously, as the tiretapses botlp; and p, in formula
(15) increase. The increase pf and p, is almost synchronous. Namely, as soort as
reaches the valug — 1+ oj)T for a particular integef, a new termp; gets included in
the sum (15); i.e., the upper summation boymdchanges from its previous valye— 1 to
the new valug . Similarly, as soon asreaches the valug — 1+ o )T + Ty for a given
j, the termg; drops from the sum (15); i.e., the lower summation bound changes frc
its previous valug to the new valug + 1. As mentioned in Section 3.3, in so doing the
variation of the difference betwegmn and p; never exceeds one. Moreover, the tempora
interval that precedes the actual momeand is taken into consideration by formula (15)
is againTjy;. Consequently, we can still compute everything in the periodic framewor
because the periad (see (9)) is sufficiently large to accommodate the extent of retardatic
Tint, and as also mentioned it does not matter where in the period the computation of e
given term starts.

From the standpoint of implementation, when the upper bopnihcreases by one
att = (j — 1+ oj)T nothing special needs to be done. If we simply continue marchir
Eq. (5a) in the aforementioned periodic framework, then we will automatically start taki
into account the new component of the RHSaftert = (j — 1+ ¢j)T. The situation
with the lower boundp; is somewhat different. Once it has increased by one (fjam
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j+1)att =(j —1+0])T + T, the termp; no longer needs to be included in the sum
(15). However, in contradistinction to the case in Section 3.3 whekg, allere supposed
to be computed independently of one another, here we cannot just stop the compute
of a giveng; att = (j —1+0j)T + Tine and subsequently say thaf(x, t, T) = O for

x € S(t) and fort > (j — 1+ 0j)T + Tixt. Indeed, the time marching of Eq. (5a) implies
that all fragments of the solutiapy (x, t, T) are calculated together as a sum and cannot b
explicitly distinguished. On the other hand, if we do nothing &t (j — 1+ oj)T + Tint
and continue with the time marching, i.e., if we do not discontinue the computation
pj(x,t, Tatt = (j — 14 0j)T + Tinr and leave this termin the solutigrix, t), then right
after this moment of time the first waves generatedfpwtt = (j — 14 0j)T will start
reentering the domaig(t) having traveled all the way across the auxiliary domé&n [E].

In other words, in the framework of the continuous time marching with periodic bounda
conditions, the ternp; (x, t, T) cannot be left in the solution as it will “contaminate” the
results onS(t).

To avoid the aforementioned contamination, i.e., to prevent the reentry of waves i
S(t), each termp; (X, t, T) needs to be eliminated from the overall solution on the auxiliar)
domain [E1, Ez] whenthe extent of its retardation (counted from inception) becomes exac
Tint. FoOr a givenj the proper moment of time for elimination @f (x,t, T) ist = (j —
1+ 0j)T + Tine. Once we take oupj(x,t, T) att = (j —140j)T + Ty, this term may
obviously be considered zero everywherep [E;] for all subsequent moments as well. To
take outthe termp; (x, t, T) we need to interrupt the time marchingat (j — 1+ 0j)T +
Tint, then go back to the inception momentfeix, t, T), whichist = (j —1+¢j)T, and
independently integrate problem (14) for a particujaon [E;, E;] from to = (j — 1+
oj)Ttoto=(j —1+0j)T + Tine. The result should then be subtracted from the time
marching solution at = t, in the correct sense; i.e., bo@and%—f (rather their discrete
counterparts) should be affected. Alternatively, we may notice that when problem (14
integrated frontg = (j — 1+ o) Ttill t, = (j — 14+ 0j)T + Tin, the wave equation will,
infact, be homogeneous on a substantial portion of this time interval be€gmse, T) = 0
fort >t =(j + 14 0j)T. Consequently, instead of marching Eq. (14) over the entir
time interval of lengthT;,;, we may actually march it only frorty = (j — 1+ o )T till
th = (j +1+40j)T, then take Fourier transform of the discrete solution and advance
till t, = () —140j)T + Tix by raising the corresponding amplification factors to the
appropriate power. Numerically, this approach appears much cheaper, especially if it re
on highly efficient fast Fourier transform (FFT) subroutines.

The new version of the lacunae-based algorithm has obviously been designed to ex:
reproduce the solution obtained with the original version in Section 3.3. The only differen
is in the method of computation: Continuous time marching in the periodic setup with cyc
subtractions of the retarded contributions versus separate computation of partial solut
driven by different components of the RHS. Consequently, the new version will poss
the same properties as the original version. Foremost, it will provide for the tempora
uniform grid convergence. Besides, it will obviously have linear computational complexi
with respect to the grid dimension. (The cost of the FFT-based evolution in time distribui
over the corresponding number of time steps is even less than linear if calculated per
step.) Finally, the algorithm will be universal in the sense that one will be able to bui
it as a modification of any consistent and stable finite-difference scheme. It will prese
the convergence rate of the original scheme while making the convergence uniforrr
time.
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3.5. Numerical Demonstrations

To actually demonstrate that the lacunae-based algorithm is an appropriate proce
that does deliver according to its theoretical design properties, we present some nume
results for the wave equation.

3.5.1. Continuous Formulation of the Problem

For our simulations, we assume axial symmetry and employrtt® cylindrical co-
ordinates to account for the three-dimensional effects using two-dimensional geome
Accordingly, Eq. (5a) that we will be solving becomes

P  L[(19 [ ¢ 9%
— —Cf—=—|r— — | =f@r,zt), t>=0. 19a
at? <r 8r< ar>+azZ) r.zb), 1=z (192)

The solutiony to Eq. (19a), as well as the RHS are functions of, z, andt. The initial
conditions for Eq. (19a) remain homogeneous as before (see (5b)):

— 0. (19b)

d¢
(p(rv Zs t)|t=0 = 07 _(r3 Z, t)
ot t=0

The actual domain of intere§(t), on which we will need to compute the solution to
the initial-value problem (19a), (19b), is a sphere of diamétdrhe center of the sphere
is located on the-axis of the cylindrical coordinate system (i.e.,rat 0). This center
(along with the entire&s(t), of course) is allowed to move along thexis, which still keeps
the axial symmetry intact. The speed of this motion should always be “subshknic¢,
which conforms to one of the key requirements for building the lacunae-based algorit
(see Section 3.2). The actual values of the parameters that we chabe-aks, c = 1,

k = const= 0.2; the last means that the center of the splséreperforms a straightforward
uniform motion in the positive-direction.

The larger auxiliary computational domain (a counterpart to the inteBjalE,] shown
inFig. 1)isarectangle [OR] x [—Z/2, Z/2] of variableqr, z), with the actual sizeR = =
and Z = 2z. The boundary conditions are periodic with the peribéh the z-direction,
and zero Dirichletat = R:

o,z Z,t) = ¢(r, z, 1), (20)
¢(R,z,t) =0.

We reiterate that boundary conditions (20) are needed only for the auxiliary problem, on
domainS(t) we will still be calculating the solution to the Cauchy problem (19a), (19b
The mathematical formulation of the problem obviously requires no boundary conditior
r = 0. However, for the purpose of subsequently building a discrete scheme (see bel
we notice that the natural assumptiongf, z, t) being a bounded smooth function, along
with the axial symmetry, immediately implies thaﬂ%hzo = 0. Consequently, the Taylor
expansion fogp nearr = 0 yields

19%
20r2 | _,
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which means that

by _ 0%

ar ~ ar2 T+ 00%).

r=0

Substituting the latter expression into (19a) and considering therlimitO, we obtain that
on thez-axis, i.e., at = 0, Eq. (19a) reduces to

Pp (% 3%
— —Cc(2—=+—=)=f@r,zt), r=0 t=>0. 21
ot? ( ar? + 822) ( ) (1)

3.5.2. Exact Solution

To assess the quality of our numerical method we need to build a reference exact solu
to problem (19a), (19b). This solution is obtained using the Lorentz transform:

1 k/c z
0 = = R
V1-k2/c? V1-k2/e2 ¢

k/c

1
— ot —— .z
V1—-k?/c? ¢ V1-k?/c? ‘

Transformation (22) introduces the new coordinate systegn 6). The origin of this new
coordinate system coincides with the center of the spBéneand moves with the speed
k along thez-axis of the original coordinate system. In other words, at every givién

is positioned at = kt in the original frame of reference. In implementing transformatior
(22), we will always need to assume tlkat const. ank < c, as has also been suggested
in Section 3.2. Specific parameters that we have selected in Section 3.5.1 conform to t
assumptions.

The key property of the Lorentz’ transform (22) is that it does not change the form
the wave equation (5a) (and consequently, (19a) and (21)); see, e.g., [27]. As such, le
introduce an arbitrary function of timg = x(t), x(t) = 0 fort < 0, that is also smooth
Vt € (—o0, +00). Next, we defing? = r2 + ¢2, and then

(22)
=—

9—2L
v(r, ¢, 0) = % (23a)

becomes a solution to the wave equation in the new coordiatesy). Solution (23a) is
driven by a point-type source, which is located at the origm= 0, ¢ = 0} of the new
coordinate system and modulated in time by the funci@®). As x’(0) = 0, this solution
also satisfies the homogeneous initial conditions. Consequently, the function

r,z,t)
x(0(z, 1) — 2020
pe(r,z 1)

v, zt) = (23b)
obtained by substituting (22) into (23a) is a solution to Eq. (19a) with the RHSz, t) =
x (@) - 8(r,z— kt). In other words (r, z, t) of (23b) is a solution to the wave equation
excited by a5-source that performs a straightforward uniform motion and is modulated
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time by a given smooth function. Solution (23b) also satisfies homogeneous initial conditit
(19b). From the standpoint of physics, solution (23b) can be characterized as radiatio
spherical waves by a moving point source.

Solution (23b) is obviously singular. To use it for testing the numerical algorithm w
need to remove the singularity. For that, let us defffhe r? + (z — kt)? and introduce the
function Q = Q(F), I > 0, such thatQ(0) =0, Q(f) = 1 forf > «d/2, wherex < 1 is
a parameter, and alsg2® = "Ad/2 _ gform =1,2, ... till at leastm = 4. Then, it
is easy to see that the functigrr, z, t) = ¥ (r, z,t) - Q(F) is regular (i.e., continuous and
bounded) everywhere. Moreover, it is easy to verify by direct differentiation that the sal
is true for the function

fr,zt) Eoer, zt) =ow, zt) - QF)), (24)

wheret denotes the wave operator, i.e., the left-hand side of Eq. (19a). We willuse t)
defined by (24) as the source function for Eqg. (19a). Cledrly, z, t) may, generally
speaking, differ from zero only on the ball of a smaller diametkiconcentric withS(t).
Everywhere else, i.e., fér> «d/2, f(r,z,t) = 0.

For the numerical experiments in this section, we chose the following specific parame
and functionsk = 0.8, x (t) = (1 + 3 sint)P(1 — ;-), whereP(t) = 1fort <0, P(t) =
Ofort > 1,andonthe interval [QL] P(t) is apolynomial of degree 9 suchtha¢l/2 +t) =
1— P(1/2—1t),andP’(0) = P”(0) = P”(0) = P! (0) = 0. Obviously, this polynomial
is uniquely defined and contains only odd powerg.dh so doing, the overall function
P(t) has four continuous derivativé$ € (—oo, +00). The functionQ(F) is defined with
the help of the same ninth-degree polynomial; nam@y) = 1 — P(%), f>0. We
do not present here the actual expression ffar, z, t) of (24) that corresponds to the
selectedy (t) andQ(f') because it is cumbersome; the computatioh @f z, t) is, however,
straightforward.

Obviously, the exact solution to problem (19a), (19b) driven by the R4Sz, t) of
(24) is the foregoing

This function satisfies the nonhomogeneous wave equation with the source terms cor
trated on a smaller ball of diameted concentric withS(t) becausef (r, z,t) = 0 for

f > xd/2. Everywhere else(r, z, t) of (25) is a solution to the homogeneous wave equa
tion because it coincides with(r, z, t) of (23b) forf > xd/2. Consequentlyy(r, z, t) of
(25) can be interpreted as the radiation of waves by a compactly supported moving so
f(r, z,t). Numerically, we will be reproducing solutiop(r, z, t) given by (25) on the
domainS(t) using finite-difference methods.

3.5.3. Grids and Finite-Difference Schemes

We employ three different explicit central-difference schemes in our simulations.
all three cases we construct a uniform rectangular grid on the giagge r, = lh,, | =
0,1, ...,N,h = R/N;,andzy, = mh,, m=0, +1, ..., =Nz, h, = Z/2N,. The discrete
time levels aré, = nt,n =0, 1, .. .. For the cell-centered second-order scheme, we kee
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the values of the unknown functignat the grid nodes in the-direction and at midpoints
in ther -direction:

41 -1
Pj2m = 20 12m + Plhij2m cz( 1 1 {n l‘/’l Ya2m = Pli1/2m
- +
72 M1z he hy

Alr12mi1 = 2001 2.m T Olh2m-1

+ h2 ’ )=f|11/2,m- (262)
z

<P|n+1/2,m - <P|n—1/2,m
I h
r

Equations (26a) hold for all > 0. As in this case we do not have the unknown functior
defined on the axis of symmetry, and the closest values that correspbre@aare half

a grld size awayp!), n; then the scheme fdr= 0 is obtained by simply assuming that
M&| = 0, which can be interpreted as a second-order approximation of tl
natural condltlon;—rh:o = 0. This immediately yields far= 0

n+l n-1
P1om = 201 2m + ¥12.m
2
T

11 ‘/’3/2 m ‘Pl/z m ‘/’1/2 m+1 2‘/’1/2 m T ¢1/2 m—1
—c—=r + =flom (26b

For the node-centered second-order schesme taken at the actual grid nodes, and for
| > 0 we have

1 -1
O =200+ oim'_ 2(L1[ ¢lam=elm ¢ elim
72 r h + hr —Y hr
Mms1 — 20+ o
L #lmia ﬁlz,m ¢|$m_1> _ (27a)
z

To obtain the scheme on the axis of symmaetey O in this case, we need to approximate
Eq. (21). For the > derivative in this equation we can first formally Wﬂ%eh o~
Mﬁw Th|s expression obviously reducesi’gé|r O~ 2M because of the
symmetry,go 1.m = ¢1.m, and consequently; we obtain

n+1 n n—1 n n n n n
Pl.m 2‘pl,m + Dl'm 2 P1.m — Pom Pom+1 — 2¢O,m + Po,m-1 n
- Bl G h = fgm- (27b)

r

The last scheme is the node-centered fourth-order scheme. More precisely, it approxin
spatial derivatives with the accura®y(h;* + h?) and temporal derivatives with the accuracy
O(t?). Forl > 1 we have

wln-r;l zwlr’lm + (plr’l%l — C2 ﬂ'li | zw —nI-1 ZM
e 3r by o hy - h,
— }Ei g0|n+2.,m ' _r (4 Pl_2m
3r2h |'F 2h, - 2h,

n _§0Ir1,m+2 + 16(plr,lm+1 - 30‘/7In,m + 16(pln,m—l - ‘plrjm2> — N
- I'm-

28
T (28a)
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Forl = 1 we have|_; = ro = 0 and consequently

(prl1,+n11 - 2(pr11,m + 902;711 _ 2 ﬂ'ii r (pg,m - (pim _r (pim - (pg,m . }ii
72 3rah [ % hy Y2, 3ry 2h,
s |r ‘pg,m - §0I11,m + _(pierZ + 16(pr11,m+1 - ‘?’Qorl],m + 16‘pll1.m71 - (p?,m—z — fn
2 on, 12n2 Lm:
(28b)

Finally, for| = 0 we again have to approximate Eq. (21). Using symmetry like in th
previous case, we arrive at

908;11 - 2‘p8,m + (pg;nl _? 2_2(p2,m + 32‘p?m - 30(p8m
72 12h?

+ _(pg,m+2 + 16‘p8.m+1 - 30‘:08,m + 16908,m71 - (pam72 — fn
12h2 om

(28¢)

For all three schemes, (26)—(28), setting the discrete counterparts to boundary condit
(20) on the outer boundary of the auxiliary domainif) x [—Z/2, Z/2]is straightforward.
An extra boundary condition is needed for the fourth-order approximation. As it basica
does not matter what boundary conditions we use on the outer boundary of the auxil
domain (see Section 3.2), we simply gt _; ., = 0 in addition togg, ., = 0.

In all the computations conducted, we have used the grids with squareNels:N,
or equivalentlyh, = h, = h. The actual grid dimensiord; x 2N, were 64x 128, 128x
256, and 256« 512. Considering a sequence of subsequently more fine grids allowed
to conduct a grid convergence study for our algorithm; see below. Regarding the time :
7, all three schemes (26), (27), and (28) are explicit and as such, there is a Courant-
stability constraint. The selection of the actual time steps is discussed below.

As mentioned, the purpose of presenting the numerical results in this section is to «
roborate the theoretical design properties of the lacunae-based algorithm, i.e., to shov
temporally uniform grid convergence on long time intervals. To achieve that, we conduc
grid refinement study; i.e., we approximate the exact solution (25) on the aforementio
sequence of successively finer grids. In so doing, the timerstepthe two second-order
schemes (26) and (27) is always reduced with the same rate as the corresponding spatia
h, andh,; namely, we always take = h/c/+/3 (remember, = h, = h) in this case. For
the fourth-order scheme (28) the time steghould be reduced twice as fast (i.e., by a factol
of 4 every timeh, andh, are reduced by a factor of 2) to demonstrate the fourth-order over:
grid convergence inthe end. In practice, we teck h/c/2 for scheme (28) onthe 64 128
grid, and therr = h/c/4 andr = h/c/8 for the 128x 256 and 256x 512 grids, respec-
tively. The computations in each case were runftill the dimensionless teaehed the value
of 200- d/c, i.e., for 200 times the time interval required for a wave to cross the domai
This certainly qualifies as “long-term” from the standpoint of any conceivable applicatic

Other parameters and characteristics of the computational setup have been take
follows. The temporal partition sizeT2 see (12), was found from formula (9) assuming
thatTy, = $+2TC€+K The value of the overlap parameter wias- 1/2. The function® (t)
of (10) that defines the partition of the right-hand side (11) was built with the help
the functionP(t) introduced previously in Section 3.5.2. Namely, foe [oc T, T] (see

formula (10)) we define®(t) = P(Tt(zfz)). Finally, to subtract every; from the overall
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FIG. 2. Grid convergence study for the long-term lacunae-based integration of the wave equation using
second-order scheme (26).

solution at the proper momeht= (j — 1+ oj)T + Tinr, we would first march Eq. (14)
fromt=(j —1+o0j)T till t=(j +1+40j)T and then use a Fourier expansionzn
and an expansion with respect to the corresponding discrete eigenfunctions (calcul
numerically) inr to advance it further tilt = (j — 14+ o J)T + Tine.

3.5.4. Discussion of the Results

In Figs. 2 and 3 we show error profiles (more precisely, natural logarithm of the relati
error on the domairs(t) in the maximum norm as it depends on the dimensionless time
on all three grids for both second-order schemes (26) and (27). In Fig. 4, similar curves
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FIG. 3. Same as Fig. 2 for the second-order scheme (27).



GLOBAL ABCs FOR WAVE PROPAGATION 733

-5.0 T T T
-55 | 1
o0 \\NV\/\ANVV\NV\ANV\/‘NWV\AAMNW/\NWV\N\NV\NVW\NV‘ANV\N;
6.5 ¢
-7.0 | B
75} —— 64x128 grid ]
5 : o—o 128x256 grid
5 80 *+— 256x512 grid ]
2
k]
[
‘e
- 100 .
-10.5

-11.0
-11.5
-12.0 1

-12.5 : ' '
0.0 50.0 100.0 150.0 200.0

Dimensionless time

FIG. 4. Same as Fig. 2 for the fourth-order scheme (28).

shown for the fourth-order scheme (28). From these figures we conclude thatindeed no «
is accumulated in the course of computations because all error profiles are flat throug
the entire 200d/c time interval. Thus, the solution does not deteriorate as time elaps
Figures 2 and 3 also show that every time the grid is refined by a factor of 2 the error dr
by approximately a factor of 4, which indicates second-order convergence. Similarly, Fig
shows that every time the grid is refined by a factor of 2 the error drops by approximate
factor of 16, which is an indication of the fourth-order convergence. Consequently, we ¢
conclude that numerical experiments fully corroborate the theoretical design propertie
the algorithm.

4. LACUNAE-BASED ABCS FOR THE WAVE EQUATION

The lacunae-based algorithm of Section 3 provides a venue for constructing the AE
for a class of problems that reduce to the homogeneous wave equation in the far fi
We schematically depict the geometric setup for one such problem in Fig. 5, assuming
simplicity that there is no source motion= 0, and the computational domain is station-
ary. We emphasize though that this is not a limitation, and that the actual ABCs will
constructed and tested for the general case of a moving computational domain, while
law of motion can be arbitrary; see Section 3.1, The problem to be solved on the boun
interior domain, i.e., in the near field (see Fig. 5) may involve some complex phenome
whose nature, however, is not essential to the current discus¥ionly require that the
overall combined formulation of the problem be uniquely solvable and well posed unt
the assumption of radiation of waves in the far field (fr&th) toward infinity), where the
problem is assumed to be governed by the homogeneous wave equation. The role o
ABCs (as mentioned in Section 1) is to provide a closure for the truncated problem sol
on the actual computational doméit). This closure has to ensure that the correspondin

5 The interior domain is, of course, the sameSgs) of Section 3; for the stationary case we obviously have
S(t) = S(0).
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FIG.5. Schematic geometric setup for the ABCs.

finite-domain solution recovered with the help of the ABCs be close to (ideally, exac
the same as) the solution of the original nontruncated problem restricted to the boun
domain; see [2].

In the wave propagation framework adopted in this paper, one can say that the AE
have to replace the entire far field, i.e., everything beyond the bounded interior d§¢hain
so that the resulting artificial boundary is completely transparent for all the outgoing (i.
radiated) waves. We also note that the incoming waves, provided that they are meanin
for a particular setup, can, in fact, be taken into account through the boundary conditi
as well, but we do not discuss this issue here for the reason of simplicity.

4.1. Preliminary Considerations in the Continuous Framework

Let o, = ¢c(X, t) be a solution to the aforementioned combined problem. In the far fiel
i.e., outsideS(t), the functiong¢(x, t) satisfies the homogeneous wave equation. We als
assume for simplicity that the solutigg(x, t) “smoothly originates from zero” at= 0 (i.e.,
turns into zero along with its first derivative) in much the same way as the solpitiorn)
to (5a), (5b) does. This assumption, in fact, will present no limitation when constructi
the ABCs. The argument is the same as the argument that allows us to relax the assum
of homogeneity of initial conditions when building the original lacunae-based algorithr
see [23].

Let us now introduce a special multiplier function that is again schematically shov
in Fig. 5. This functionu = w(x, t) is defined for all thosex andt, for which the solu-
tion pc(x, t) makes sense. We first require tat> 0, VX ¢ S(t) : n(x,t) = 1, orin other
words, that the multiplier be identically equal to one everywhere outside the computatio
domainS(t) for all times. We also require that the multiplier be identically equal to zerc
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n(x,t) = 0, on most of the domaifs(t) (again, for everyt) except next to its boundary
from the interior side. An example of the narrow near-boundary transition region where
multiplier i (X, t) changes its value from zero to one is shaded in Fig. 5. What is importa
is that we require that the multiplier(x, t) be a sufficiently smooth function with respect
to bothx andt, which essentially means that the transition within the shaded region in Fig
has to be smooth. Regarding the time dependengy(xft), once the domails(t) moves
according to a prescribed law, the construction of the multiplier has to trace that motior
the computational domain is stationa8¢t) = S(0), then the multiplier still may, but does
not have to, depend on time.

Next, we apply the wave operator= 5’—52 — C?A of (5a) to the functionu(x, t) - ¢c(X, 1),
which is defined everywhere, i.e., both inside and outSidg® We will obviously have

=0 WVt Vx & S(t)
— A(nge) = g(x,1) ¢ #0 in the transition region  (29)
=0 “wellinside” S(t).

9% uge
at2

O(uge) =

The functiong(x, t) of (29) may, generally speaking, differ from zero only in the foregoing
near-boundary transition region; it is zero outs&le) because the functiony. coincides
there with the solutiorp. of the homogeneous wave equation; it is also zero inSide
because. = 0 there. In Fig. 5 the nonzero portion @fx, t) is identified as the right-hand
side, RHS.

We can now consider the problem (5a), (5b) with the functjon t) of (29) substituted
instead of the generic RH$(x, t). The key fact that we will need for constructing the
ABCs, and that follows immediately from the unique solvability of the Cauchy problem f
the wave equation, is that the solution to this problem will coincide witk, t) - c(X, t)
everywhere. What will be of particular importance to us is that as such, this solution v
coincide withg(x, t) outsideS(t) for all times, becausg(x, t) = 1 there. In other words,
we have replaced all of the interior problem $¢t) (no matter how complex it may be) by
the special near-boundary source functigx, t) so that the corresponding far-field portion
of the solution, i.e., the wave-radiation solution outsiig), remains totally unaffected.
Later, see Sections 4.2 and 4.3, this reduction interpreted in the discrete framework wil
used for setting the ABCs. The idea is to use the exterior solution obtained in an alterna
way through integrating the near-boundary sources as a closure for the interior prob
solved on the finite computational domain.

4.2. The Concept of Discrete ABCs

To construct the ABCs for a finite-difference scheme that approximates the probl
described in the beginning of Section 4, we will employ the considerations similar to thc
of Section 4.1, but on the discrete level. As a helpful illustration, we will first consider he
a one-dimensional model examgland then, in Section 4.3, show how to build the ABCs
for the actual multidimensional wave propagation problems.

5 Note that the solutiog.(x, t) may not be defined on all &t) if, e.g., there is a scatterer inside. As, however,
n(x, t) = 0 there, we can consider(x, t) - ¢.(X, t) to be defined everywhere.

" Generally speaking, one-dimensional problems do not have lacunae (except in special cases); as sucl
example will only demonstrate the formal construction of the ABCs on the grid.
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FIG. 6. lllustration of the one-dimensional example.

Assume that we are solving a one-dimensional combined problem on theRnTire
computational domairg(t) = S (i.e., the “near field”) is fixed, it is the half-ling <0
(more precisely, itig(x,t) | x < 0, t > 0}); its complemenR\ Srepresents the “far field,”
which is to be truncated and replaced with the ABCs. As such, the ABCs are to be se
the interfacex = 0. In accordance with the previous discussion, we also assume that the
field is governed by the one-dimensional homogeneous wave equation

P9 _ 20%

— =0, 30a
ot? ax? (302)

which is approximated by the standard, second-order central-difference scheme

ot =200 + o 2V =20+ ol

72 h2

-0, (30b)

constructed on the rectangular grid of variabtesndt with sizesh andtr = h/c, respec-
tively, using the five-node stencil shown in Fig. 6. (Note that all the schemes used
simulations in Section 5.3—see (26)—(28)—are of the same central-difference, expli
three-level type. This, however, is by no means a limitation—the ABCs can be construc
for any type of discretization.)

To create the discrete near-boundary sources similar to those of Section 4.1, and event
set the discrete ABCs, we will need to be able to apply inSidee same finite-difference
wave operator of (30b) as the operator we are usinB\g® As such, we formally extend
the exterior discretization, i.e., the rectangular grid with t cells, into the interior domain
S, as shown in Fig. 6. We reemphasize, however, that this is done only for the “artifici:
purpose of building the ABCs. The actual governing equation in the near field, i.8, asn
well as its discrete counterpart, may be more complex than the wave equations (30) ab
In fact, neither the scheme stencil nor the grid used for computations in the near fielda
be the same as both in the far field (although, they, of course, may). We only require 1
the exterior scheme (30b) with the stencil shown in Fig. 6 be applicabbe £10. And



GLOBAL ABCs FOR WAVE PROPAGATION 737

all we need to know, from the standpoint of setting the ABCs, is that the overall combin
problem (near field and far field) is uniquely solvable and well posed.

Let us now consider all nodes of the aforementioned rectangular grid that belSijgrto
all time levels), i.e., those for whicky = jh < 0. We denote this set of grid nodes.hf';
the complementary set that consists of all nodes fRo(8, i.e., those, for whiclx; > 0, is
denoted byV~; see Fig. 6. If we formally apply the five-node stencil of the scheme (36l
to each node from\V*, then this stencil is obviously going to sweep one more vertical roy
of nodes, which already belongsi6™ (i.e., toR\ S), and which is denoted by~ in Fig. 6.
Reciprocally, if we apply the stencil to every nodeNfT, it will also sweep the nodes™
that are already itW™". The two-layer grid structurg = y* U y~ will be called the grid
boundary; it represents on the discrete level the continuous interface beBeeetR\ S,
which is the vertical linex = 0.

Next, we assume that we integrate the interior problem one time step after another
that we already know the discrete squt'tm@) on the domairs, as well as the values of)
on the grid boundary, up to a certain time leved (in particular,n may be equal to zero,
which corresponds to the initial conditiorfsThese data obviously allow us to advance the
next time stem + 1 ony* and everywhere insidg in so doing, we compute the outermost
interior locationy * on the leveh + 1 is computed by scheme (30b) using the stencil show
in Fig. 6. These data, however, already do not allow us to calculate the discrete solu
¢™ aty~ onthe leveh + 1. And if this valuefpgfl is not known, then we cannot advance
further to leveln + 2. Therefore, we conclude that the function of the ABCs in the discre
framework will be to provide the missing boundary values of the solutiop—abn all
time levels, one after another, starting froma= 1. This indeed constitutes the closure of
the discrete system solved &n

To provide the foregoing missing boundary valqa}grhil for a givenn, we recall that
even though we do not know the discrete solution on levell beyondy ™ (i.e., we do
not know ¢}\**), we do know that the solutiom(sh) can be complemented ok~ to a
solution to Eq. (30b) on all time levels titl + 1. For our purposes, we will only need the
existence to this complement rather than its actual representation. Let us now introdu
multiplier functionu similar to that we have used in Section 4.1. The near-boundary interi
transition region for this multiplier is schematically shown by the shaded area in Fig 6.\

apply this multiplier to the combined discrete solutigf = <p/‘\'}iw_ on all time levels

includingn + 1 (obtaininge ", may require projectingg’ onto the grid\/*). When this
is done, nothing changes dvi— U y T, becausg. = 1 for x > 0. All the changes due to
multiplication Of(péh) by u will obviously be introduced oW ™\y* only. Those amount to
a smooth passage within the transition region (see Fig. 6) from the actual unaltered va
of the solution ory* to zero “well inside” the computational domain.

Next, similarly to Section 4.1, we apply the discrete wave operatdrof (30b) to the
modified solutionug™. As o™ is defined up to the level + 1, the resulig™ will be

defined up to the level. Analogously to (29), we obtain for all levels tiil

=0 onthe gridV~
o™ (ueM) = g™ ¢ #£0 ony* in the transition region (31)
=0 ‘“wellinside”N'*.

8\We use the subscripS’ in " rather than \/*” to emphasize that the actual interior discrete solution may
be computed on a different grid.
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Notice, that we can claim that the result in (31) is zeraAn only because nothing has
been modified by: on y* and beyond. As such, we are simply using the fact gi#itis

a solution to the homogeneous equation outside the computational domain, and we dc
need to know the explicit form of this solution.

Finally, we solve the nonhomogeneous counterpart to Eq. (30b) driven by thg RS
(31) everywhere ot U N ~; this will be henceforth referred to as solving the auxiliary
problem. According to our construction, solving the auxiliary problem will allow us, ir
particular, to recover the value @f*1, which was not known previously, and which can
now be supplied to the interior scheme as the missing boundary value. This means tha
will have provided the ABCs for the interior problem, because in so doing we complete t
time leveln + 1 and facilitate advancing the next level- 2.

The are several important comments to be made regarding the foregoing ABC algoritl
At a first glance, the new formulation simply does not change much from the standpc
of solving the original infinite-domain problem. Indeed, all we have done is replaced t
interior problem by the artificial near-boundary sources so that the exterior solution
mains unaffected. Then, we suggested the use of this exterior solution to close the inte
discretization. However, obtaining this solution, i.e., solving the auxiliary problem, ba:
cally brings along the exact same set of complications that we have been trying to av
by introducing the ABCs. Indeed, the domain of the auxiliary probfému A/~ is still
unbounded and as such, special treatment will be required for its numerical solution.

There is, however, a fundamental difference. The new auxiliary problem is linear throug
outthe entire space, anditis driven by known sources that are compactly supported insid
computational domais. Consequently, the lacunae-based algorithm of Section 3 appe:
to be a most natural tool to solve’iEmploying the lacunae-based algorithm immediately
implies that the domain of the auxiliary problem becomes bounded. Moreover, the “su
ciently retarded” sources do not contribute to its solution (see Section 3); i.e., only a limif
extent of temporal prehistory of the solution will be needed to sustain the continuous ti
marching no matter how far in time we would like to advance the solution. In other worc
the missing boundary value for the interior discretizagixgﬁi1 can be obtained using only
finite computer resources in terms of both memory and number of arithmetic operatic
Furthermore, these resources (say, per time level) will notincrease no matter for how lonc
may need to run the computation, i.e., how langaay become. In this sense, the proposec
ABCs become “true ABCs,” i.e., the procedure that guarantees the appropriate closur
the truncated problem with only finite nongrowing amount of computer resources requir
In addition to that, we are guaranteed that the ABCs as a part of the overall algorithm \
not contribute toward the buildup of numerical error during long runs.

The proposed ABCs can obviously be implemented via alternating interior/exterior ste
Namely, we advance one time step in the interior (includifiggassuming that all the data
that we need from the previous time levels are available. The resulting newly calcula
time level will be the only one to which the multiplier has not been applied yet. We multip|
it by 1, and then apply the direct operator thus obtaining the right-handgsitiesee
(31), on one more time level as well. Finally, we perform one step of the lacunae-ba:
integration of the auxiliary problem driven lgf™ and obtain the missing boundary value

9 We reiterate that this algorithm cannot be applied in the case of one space dimension, but our ultimate
is three-dimensional problems (see Section 4.3) and the considerations of the current section are for illustr
purposes only.
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for the interior problem. Then, the procedure cyclically repeats itself. Summarizing, we c
say that having advanced the interior solution, we can then generate a new contributic
the RHS of the auxiliary problem and subsequently advance its solution, which, in tu
allows us to calculate the next interior step.

Animportant observation, which is easy to make, is that the missing boundaryaZéiFue
which the ABCs provide, does not, of course, depend on the actual shape of the multiy
w« in the transition region. Indeed, is defined so that it does not alter the solution or
the grid boundary . Consequently, when we first apply the direct operatqugd”, see
(31), and then integrate the nonhomogeneous wave equation drivg® bthe solution
on y will remain unchanged no matter what changes have been introducgdrbyhe
interior. As such, the value;‘fl will only depend on the values of the solution pron all
previous time levels, as well as mjil. Moreover, since all the operations that we perform
when constructing the ABCs are linear, we can symbolically write the resulting bound:
condition as a linear form,

0 =1t ol ol 7t ). (32)

Technically, the dependency gaffl on the previous time levels, see (32), involves all of
the latter, fromp? all the way backtilh = 0. However, the use of the lacunae in three spac
dimensions will allow us to truncate (32) and leave only several levels that immediat
preceden + 1; the number of the levels involved will be fixed and will not increase witt
the increase ofi. As such, temporal nonlocality of the ABCs will be limited, and this will
not be a consequence of any approximation, but rather an implication of the fundame
properties of the problem. We also note that the representation of the ABCs in the forn
(32) is primarily for convenience and compactness in notation. In fact, the coefficients
the linear forml need never be known explicitly except, possibly, when multiple interio
problems are solved with the same exterior model (which means the same grid, s
geometry, and same scheme). In this case it may be beneficial to calculate tHeofaren
ahead of time, compared to the straightforward calculatiop(jdif many times according
to the procedure outlined above.

Itis also important to mention that boundary condition (32) can be obtained in the fran
work of a general unsteady ABC methodology proposed by Ryaben’kii in [26] (see a
older work [28]) for a variety of problems, including multidimensional cases, domains
varying shape, and different types of schemes—explicit as well as implicit. Work [26, 2
describes the theoretical construction of the ABCs per se and does not address any issu
lated to the actual computations (for example, using lacunae-based integration, as prop
in the current paper). The methodology of [26, 28] relies on the concepts of generali
potentials and boundary projection operators of Calderon’s type obtained and impleme
in the discrete framework by means of the difference potential method; see [29-32]. Fi
this perspective, the ABCs of [26, 28] , and the boundary condition (32) in particular, c
be interpreted as discrete counterparts to Calderon’s boundary equations with project
in the unsteady case. In Section 4.3 we will describe a direct approach to obtaining mult
mensional ABCs on moving boundaries, with no explicit use of the apparatus of Calderc
projections, and will also show how to apply the lacunae-based algorithm to perform
computations needed for these boundary conditions.

To conclude this section, we emphasize that even th@{’]@“ﬁ obtained according to
(32) formally does not depend on the shape of the multipliénside S, we still need to
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have this multiplier smooth. In other words, we could not have used, e.g., a step functi
instead ofx. The reason is that nonsmoothness will ruin lacunae in the discrete solution (
Section 3 and [23] for more detail) and consequently, we will no longer be able to use
lacunae-based integration for solving the auxiliary problem and as such, setting the AB

4.3. General Construction of Discrete ABCs

Similarly to the setup of Section 3, we now consider a dongitn R® that has finite
diameterd for all times and other than that may travel in space according to a prescrib
law with the only limitation being that its maximum speed be subsdnic,c. S(t) will be
the computational domain, or near field. In the far field, i.e., outSidg we assume that
our model is governed by the homogeneous wave equation,

82(p ) aZw 82¢ 82(/)
ot2

8—><f+8—x§+a_x§>=0’ t>0. (33)
As we have discussed, insi@&t) the solutionp = ¢(x, t) may be governed by a more
complex equation/system, but all we need to assume is that the overall problem be uniq
solvable and well posed under the condition of waves’ radiation toward infinity. For sir
plicity, we also assume homogeneity of the initial data everywhere, which is, however, |
a limitation (see [23]).

Let us now introduce the discretization grid for Eq. (33). In principle, we need this gr
only in the far field, i.e., outsid&(t), because the interior problem may be discretized ir
a different way, as indicated before. As, however, we have also seen, to obtain the Al
we need to set up the auxiliary problem for the nonhomogeneous counterpart of Eq. |
driven by the special near-boundary sources. The auxiliary problem is to be formula
and solved on the entire space. As such, we introduce the grid for the linear wave eque
on the entireR® x [0, co) as well. We denote by the collection of all grid nodes in
R® x [0, 00), on which we evaluate the solutign Since (33) is an evolution equation,
it is convenient to consideN” as a composition of spatially aligned grid hyperplanes
N =NyUNLU---UN,....EachV\, is a spatial grid oiR®, and we emphasize that they
may, but do not have to, be the same on different lemels

Let the individual nodes of the gridf” be denoted by. Equation (33) is approximated
by a finite-difference scheme, which we assume, of course, to be consistent and stable

> amngn =0. (34)
NeNm

In (34), N denotes the stencil attributed to the nodeandan,, are the corresponding
coefficients. When we say that the stencil is attributed to a particular node, we mean tha
residuals of the discrete equation are evaluated at this particular grid location. Regart
this, we note that the residuals of the discretized Eq. (33) may be, but do not have to
evaluated on the same gM. To preserve the generality of the discussion, we assume th
there is another, different, grith in R3 x [0, 0o), on which we keep the residuals, as well
as the right-hand sides, if any, of the discrete wave equation. The subsdnifEq. (34)
basically refers to this gridn € M. In the one-dimensional example of Section 4.2, bott
grids A and M were simply the same, and we did not have to distinguish between the tw
To give an example of the opposite type, we mention the Yee scheme—see [33]—wl
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is one of the primary tools for discretizing the Maxwell equati@rend which involves
staggering in both space and time.

Next, we introduce two subsets of nodes of the gvidLet the level\V,, correspond to
the actual moment of timi. For everyn, we defineN; as the set of all those nodes and
only those nodes on this level that belong to the dongix), and\V;; as the complement
of N to the entireN,, 1 V7 = M \W;f. In other words NV contains all those nodes and
only those nodes of/, that belong t&R>\ S(t,). Subsequently, we define the $ét as the
composition of all\V;f for all levels, and the set/~ as the composition of al\;;” for alll
levels:

Nt =N N =N

Clearly, N~ = M\NT.

In our definition of the scheme, see (34), we have identified the st&heilith the grid
locationm, at which the residual is evaluated. From here on, we will assume for simplici
that the scheme (34) is explicit. In this case, there is only one nonzero coeffigjgom the
upper time level of the stench,. We will denote the corresponding grid node fiayand
when it may not cause confusion, we will refer to the same stencil as éifpar NV;. It
will also be convenient to introduce the four-dimensional (space-time) vieetoi — m.
This vector defines the relative position of the nédat which the upper-level coefficient
is nonzeroama # 0, with respect to the “center” of the stenail This vector is obviously
constant; it depends only on the local structure of the stencil and does not depend on w
exactly on the grid this stencil is applied at every given moment. In the one-dimensio
example considered previously, we would have (z, 0).

Let us now apply the stencil; to every nodeh € A't; in so doing, we see that the
stencil obviously sweeps the entire gifi, as well as a portion of the grilf — next to the
interface; we will denote this portion by

y~ = [U Nﬁ] N~

AeN+

In Fig. 7, we present a one-dimensional illustratfosimilar to that in Fig. 6 for the case
of a uniform motion of the computational domain, where the space—time trajectory of 1
boundary is a straight line (the set is denoted by small circles). From the standpoint o
implementation, the values of the solution at the nodeare exactly those that need to be
provided by the ABCs from the exterior side so that to be able to calculate the solutior
every interior node € Nt using the scheme (34). Reciprocally, the stengilapplied to
every nodeh € A/~ sweeps additional nodes™ c N'*, see “bullets” in Fig. 7,

v = lU Nﬁ] -

AeN -

10 The simplest version of the Maxwell equations describes the propagation of electromagnetic waves in vac
which is a wave model similar in many respects to that given by (33).

1 We note again that everywhere in this section the one-dimensional examples are for illustration purposes
the actual algorithm is three-dimensional.
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transitior
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FIG. 7. One-dimensional illustration of the case of a moving domain.

The sety™ complements ~ to the complete grid structure known as the grid boundary
(see [30, 31]):

y=v"Jr-
The grid boundary is a multilayer fringe of nodes (two-layer fringe in the particular case
a second-order scheme with the stencil depicted in Fig. 7) that is located near the contint
boundary and straddles it in some sense (cf. Section 4.2).

To proceed with the construction of the ABCs, we will need to assume hereafter tl
the region of linearity, i.e., the area where the solution of the overall combined proble
is governed by the linear homogeneous wave equation, extends “a little bit” to the inter
of the computational domai§(t) as well. More precisely, this region will be assumed to
extend inward at least as far as the entire grid boungiaryhis obviously presents no
limitation from any standpoint. The multipligt = w(x, t) in this case is required to be
identically equal to oney(x, t) = 1, not only outsides(t), but also inside—again, to the
extent ofy *. As such, the transition region for the multiplier, which is schematically show
by the darker gray shading in Fig. 7, is shifted away from the boundaBgtof

To actually build the ABCs, we will perform the procedure outlined in Section 4.2. Wh:
we actually need in the discrete framework is to obtain the missing exterior boundary val
of the solutiortp'y“,rl on every time leveh + 1, or in other words, to complete this time level
to be able to advance the next time step. To do that, we take the solution already comp
insideS(t) up to the leveh + 1, multiply it by 1, and then apply the discrete operatdp
everywhere. In doing so we assume, as mentioned before, that starting fvatward, the
solution satisfies the discrete homogeneous wave equation. In the general case that w
looking at now, an application of the operatdf’ brings us from the gridV to the grid
M. The construction of the grid boundapyand multipliern guarantees that on all time
levels up ton the near-boundary artificial sourcg$’ will satisfy (cf. (31))

=0 forsuchme M thatm+be N~
0™ (ue) = g™ { #0 for such near-boundamy € M thatm+b e N'* (35)
=0 one the gridM “well inside” S(t).

Formula (35) suggests that in addition to the actual interface between the domains, i.e.
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boundary ofS(t), it will be convenient to consider another space—time trajectory obtain
from this original interface by the constant displacemeht it is shown by the dashed-
dotted line in Fig. 7. The right-hand sid&” will be zero onM everywhere outside this new
displaced boundary and will differ from zero right next to it on the interior side. In Fig. -
we schematically show by the lighter gray shading the region where we stillhavd
but the RHSg™ may already differ from zero. Note, in the example in Section 4.2, we di
not need to consider the displaced interface because the d@ggaimas stationary and the
displacemenb was parallel to the time axif,= (z, 0). Another important case when the
two boundaries would coincidefis= m < b = 0. However, we cannot generally assume
that for time-dependent problems. On the other hand, we mention that the grid boundz
originally introduced in [29—-31] and previous publications by Ryaben’kii for the solutio
of steady-state problems using the difference potential method, have been constructe
that just the centem of the stencil\V, (where the residuals are evaluated) would sweep
given grid subdomain and as such, generate the aforementioned fringe ofynndesto
the continuous boundary.

Let us now make a few remarks of an explanatory nature regarding the structure of
grid boundaryy . It obviously depends only on the type of the ster\¢i| and geometry of
the actual continuous boundary that it straddles. From the definitipiit & easy to see that
once we have a solution to the homogeneous equatignand everywhere in the exterior,
and operate by ™ on this solution, then we can guarantee without actual calculation that t
resultwillbe zeroforalin € M:m + b € A/~. However, we cannot “touch” even one single
node fromy in order not to lose this property. If, for example, we allow an alteratiorny(\&

1) of anode fromy* (see Fig. 7), it will necessarily affect the exterior RHS. The latter may
generally speaking, become nonzero at some nodeés)M: m+b € A/—, and we will

no longer be able to actually calculate it because we do not know anything about the exte
solution beyond’ except that it satisfies the homogeneous equation. We see, therefore,
it would ruin the entire derivation. On the other hand, the construction of the grid boundar
is consistent in the sense that to calculate the actual nonzero near-boundary sources for
m e M, for whichm + b € A/, itis sufficient to know the solution only oy and further
inward, nothing outsideg needs to be known. As for the valuqagl) that are still needed,
those are provided by the ABC algorithm on every time level and as such are available
all subsequent levels for calculating the source tegffisof the auxiliary problem.

Having outlined the construction of the grid boundargnd near-boundary sourcg$’
in the general case, we build the actual ABC algorithm in much the same way as descri
previously. We perform the alternating interior/exterior steps: First advance one step in
interior, then apply: and calculate one more level of the sourgés, and finally make one
step of the lacunae-based integration of the auxiliary problem driven by these sources
Section 3), thereby providing the missing data for advancing the next interior step. Th
the procedure cyclically repeats itself. To solve the auxiliary problem in this general ca
we will obviously need a full-fledged version of the lacunae-based algorithm (see Sectiol
that accounts for the motion of the sources and employs periodic boundary condition
space and continuous time-marching with cyclic subtraction of the retarded contributic
As shown, implementation of the lacunae-based integration technique guarantees the
domain of the auxiliary problem will be bounded, and the computer resources needec
the ABCs will be finite and will not grow with time. Other properties of the ABCs outlinec
in Section 4.2, namely, independence of the shape of the multjpliand the possibility
of expressing the boundary values on the current time level as a linear function of
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values on the previous levels—see (32)—hold in the general framework of this sect
as well. Because of the lacunae, the aforementioned linear form will depend only on
finite nonincreasing number of the preceding time levelsssentially those included in
the summation (15) once this formula is discretized on the §fidThis means that the
temporal nonlocality of the ABCs will be limited. As for the multipligr, it has to be
chosen sufficiently smooth to maintain good quality of the lacunae in the discrete soluti
see Section 5.

5. NUMERICAL EXPERIMENTS WITH THE ABC s

Hereafter, we discuss the results of numerical computations for several test proble
that we have analyzed using the ABCs developed in Section 4. The computational se
for these problems is in many respects identical to that described in Section 3.5. Nam
the cylindrical coordinate system, the domain of inte®éa sphere of diametet = 1.8
centered on the-axis), and the auxiliary domain [R] x [—Z/2, Z/2] (an(r, 2) rectangle
[0, 7] x [—m, 7]) were introduced in Section 3.5.1. The differential equation to be solve
in the far field, i.e., outsid&, is the homogeneous wave equation (see (19a), whezed
outsideS) with the speed of sound = 1; the initial conditions are homogeneous—see
(19b)—and the auxiliary boundary conditions are also the same as before—see (20).
finite-difference schemes and grids, including the refinement strategies needed for stud
the grid convergence, are introduced in Section 3.5.3 and used hereafter with no alterat
The partition (11) is built with the help of the same functiét), which satisfies the
general definition (10) and which we actually construct in Section 3.5.3. There are,
course, problem-specific characteristics that are different from those given in Section .
and also different for each of the problems analyzed in this section. These characteri:
are discussed in Sections 5.1-5.3.

5.1. The Wave Equation with a Known Exact Solution

The first case that we analyze in the framework of the ABCs is, in fact, the exact same pr
lem that we solved in Section 3.5. Itis the wave equation (19a) with the homogeneous ini
conditions (19b) driven by a compactly supported oscillatory source in straightforward u
form motion. The speed of this motionkis= 0.2, and the source terin= f (r, z, t) itselfis
defined by expression (24j(r, z, t) = Op(r, z,t), so thatvt > 0: suppf (r, z,t) C S(t),
where the exact solutioa(r, z,t) = ¥ (r, z, t) - Q(F) of (25) is obtained using Lorentz’
transform (22). The functiong (t) and Q(') needed for defining the exact solution (25)
(see also formulae (23a) (23b)) are the same as those introduced in Section 3.5.2.

The key difference between the current approach and that of Section 3.5 is that previol
we applied the lacunae-based algorithm directly to the original problem. Here, we rat
decompose the problem into the near fis(t) and far fieldR*\ S(t), even though both are
governed by the same wave equation. The integration in the near field is then performe
the conventional time marching. The exterior closure needed to sustain this time marct
is provided by the discrete ABCs on the boundansdf). The ABCs are constructed on
the basis of the procedure outlined in Section 4—through the lacunae-based integratic
the artificial near-boundary sources.

Similarly to Section 3.5, we have implemented three different schemes, (26), (2
and (28), and every time integrated the problem until the dimensionless time reacl!
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FIG. 8. Grid convergence study with the lacunae-based ABCs for the wave equation using the second-c
scheme (26).

t =200-d/c. The multipliern = u(r, z, t) was constructed to have four continuous deriva:
tives with respect to all its arguments. A smooth transition from 0 to 1 was obtained w
the help of the same functid®(-) of Section 3.5.2. that employs algebraic polynomials o
degree 9. The extent of the transition region varied slightly between different cases v
no noticeable effect on the quality of the solution. For all computational variants that \
considered it was within the range of several grid cells (typically, 8—10; see Section 5.4
further details).

In Figs. 8—-10 we present the results of the grid convergence study for the wave eque
(19a) integrated with the lacunae-based ABCs over the time interyaD[® d/c]. The
errors are evaluated on the interior dom&ift) in the maximum norm. As mentioned,
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FIG.9. Same as Fig. 8 for the second-order scheme (27).
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FIG. 10. Same as Fig. 8 for the fourth-order scheme (28).

the computational setup follows that of Section 3.5, where we applied the lacunae-bzg
algorithm to the original problem directly; see error profiles on Figs. 2—4. Each scheme, (-
(27), or (28), was implemented on a sequence of three grids: 528, 128x 256, and
256 x 512. The only difference is that in this case partition (11) applies to the artifici
near-boundary sources needed for constructing the ABCs, rather than the original ri
hand sidef of (24) that drives Eq. (19a).

An obvious observation which is easy to make is that Figs. 8-10 look practically i
distinguishable from Figs. 2—4, respectively. In other words, the actual levels of the er
on the corresponding grids are essentially the same. As such, we conclude that in
most simple case the introduction of the ABCs makes the outer boundary of the com
tational domain completely transparent for all the outgoing waves. This is equivalent
saying that the external boundary generates no reflection or alternatively, that any im|
fections associated with the treatment of the outer boundary can always be kept on or be
the level of the truncation error pertinent to the interior discretization. In this sense, t
discrete lacunae-based ABCs that we have constructed can be regarded as an idea
sure of the interior finite-difference scheme. Experimentally, this is corroborated by t
fact of nondeteriorating convergence of the scheme with the theoretically prescribed
to the specially constructed exact solution of wave-radiation type on the computatio
domainS(t).

5.2. Nonuniform Motion of the Source

Inthis section, we consider a somewhat more complex case of straightforward but non
form (i.e., accelerated) motion of the soutédll other parameters that define the continu-
ous problem and the computational setup remain exactly the same as before; see Sectio
and 5.1. What is new in this case is that welset 0.1 and introduce the law of accelerated

21n all numerical examples we consider only straightforward motion because its direction has to be alig
with the z-direction of the cylindrical coordinate system; otherwise, the symmetry will be lost. In general, this
not a limitation.
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motion for the center of the spheggt)
r=0, z=zt)=kt+k(cost — 1), (36)

and the excitation for the wave equation (19a)

2r 3n 2r 1. t
f(r, Z,t) = COS(E 7) . P(E) . <1+ ZS'”(\/Et)> : P<l_ Z) ’ (37)

where againd = 1.8, k = 0.8, f2 =r? + (z — zo(t))?, and the functionP(-) is defined

in Section 3.5.2. The right-hand side functidnof (37) obviously has four continuous
derivatives everywhere with respect to all its arguments. We purposely chose the temf
behavior of this function to be sufficiently complex; the frequency of the magnitude osc
lations and that associated with the motion are incommensurable. Let us also note tha
parametek that affectsTi,; = % and as suchl onceZ is given, see (9), as well
as@O(t), see formula (10) and Section 3.5.3, has the meaning of the maximum spee
the domain; see Sections 3.1 and 3.2. From formula (36) one can concluéletta®? as
before.

Unlike in the previous case, see Sections 3.5 and 5.1, the analytic solution of Eq. (1
driven by the right-hand side (37) and subject to the initial conditions (19b) is not read
available. As such, we first calculate the fine-grid reference solution of this problem on
domain S(t) using the original lacunae-based algorithm of Section 3, and then comp:
the solutions obtained on coarser grids with the help of the ABCs of Section 4 against
reference solution.

Equation (19a) driven by the RHS (37) was integrated on the fine grid of dimensi
512 x 1024 tillt = 50- d/c using the lacunae-based algorithm of Section 3 implemente
with the fourth-order scheme (28). We chose here a time interval shorter than that we t
for previous demonstrations (Sections 3.5 and 5.1) in order not to make the computatio
the reference solution excessively expensive. This interv&(Jod/c] is still quite suffi-
cient for experimentally judging the convergence; see Figs. 11 and 12. Having computec
fine-grid reference solution, we then integrated the same problem (19a), (19b), (37) on
same collection of coarser grids that we used befores 828, 128x 256, and 256« 512,
with the help of the ABCs of Section 4, and compared the results with the reference s
tion. In so doing, we have employed only the two node-centered schemes: The second-(
scheme (27) and the fourth-order scheme (28). The reason is that when both a fine-gri
lution and a coarse-grid solution are calculated using a node-centered scheme, it is
easy to compare them pointwise (e.g., taking every other, every fourth, etc., node of
fine grid). In contradistinction to that, if we were to calculate a coarser-grid solution usi
the cell-centered scheme (26), then to compare it against the reference solution we w
have had to use interpolation on the grid. This has a potential of contaminating the
sults because of the interpolation error; therefore we did not perform the aforementio
comparison for scheme (26).

When the solution to Eq. (19a) driven by a nonuniformly moving source (37) are col
puted, the computational doma8it) of course traces the motion of the source. As suct
the ABCs are set on an artificial boundary that performs accelerated motion. In Figs.
and 12, we compare the solutions obtained with the help of the lacunae-based ABCs
the fine-grid reference solution. Figures 11 and 12 show the dependency of the nume
error on dimensionless time for different computational variants, i.e., different schemes
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FIG. 11. Convergence of the solution to Egs. (19a), (37) obtained with the ABCs to the fine-grid referen
solution using the second-order scheme (27).

grid dimensions. Fig. 11 clearly indicates the second-order convergence of scheme (
For scheme (28), we observe the fourth-order convergence in Fig. 12.

To assess the performance of the boundary conditions, we computed the same sol
on the same collection of coarser grids (6428, 128x 256, and 256« 512) with the
same schemes (27) and (28), but with no ABCs, rather using the original lacunae-be
algorithm of Section 3 (as we did when we computed the reference solution). In Figs.
and 14, we compare the results with the exact solution. As expected, scheme (27) conve
uniformly in time with the second order (see Fig. 13), and scheme (28) with the fourth orc
(see Fig. 14).

Comparing Figs. 11 and 13 we conclude that for the second-order scheme (27),
introduction ofthe ABCs again givesrise to noreflection back into the computational dom:

-7 T T T
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FIG. 12. Same as Fig. 11 for the fourth-order scheme (28).
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FIG. 13. Same as Fig. 11, but the solution to (19a), (37) is obtained with the original lacunae-based algoritl

(i.e., no reflection beyond the level of the truncation error in the interior, cf. Section 5.:
As concerns the fourth-order scheme (28), one can still notice slight differences betw
the respective curves in Figs. 12 and 14. The difference is most visible for the finest ¢
256 x 512, less visible for the medium grid 128256, and practically nonexistent for the

coarsest grid 64 128. This indicates that a small amount of reflections due to the ABC
may be present in the solution, although the actual elevation of the error in Fig. 14 comps
to Fig. 13 is so low that we can regard these reflections as negligible anyway. Nonethel
the discrepancy between the corresponding curves needs to be accounted for. We att
it to the higher sensitivity of the fourth-order algorithm to the quality of the discrete lacune
This phenomenon is commented on in Section 5.4. It is not of a fundamental nature;
guality of the lacunae can rather be controlled by appropriately choosing the parametel
the numerical procedure, more precisely, the shape and smoothness of the muyiltiplier

-7 T T T T

TN e A e A A A

_8 - .
—85r —— 64x128 grid ]
9r o—o 128x256 grid b
rys *——* 256x512 grid ]

Ln[relative error]

135 MWW«W
0

10 20 30 40 50
Dimensionless time

FIG. 14. Same as Fig. 12, but the solution to (19a), (37) is obtained with the original lacunae-based algoritl
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Summarizing for the case of accelerated motion, we see that the solution of nondeteric
ing quality on long time intervals can still be successfully computed using the lacunae-ba
ABC. To the best of our knowledge, no other ABC methodology available in the literatu
can handle artificial boundaries of domains that move with acceleration, while always ke
ing the reflections on or below the level of truncation error that pertains to a given inter
discretization.

5.3. Variable Speed of Sound

For the last set of numerical experiments that we report in this paper, we wanted to se
a supposedly harder case that would be more susceptible to the buildup of numerical e
inside the computational doma8it), while keeping the computational setup basically the
same as that in the previous experiments; see Sections 3.5, 5.1, and 5.2. To this enc
notice that the discretization error for all three schemes, (26)—(28), that we used previol
for our simulations is primarily of the dispersive nature, because each of these schemes
explicit central-difference type. In the examples of the current section, we will artificiall
increase the numerical dispersion inside the computational dddi@iand experimentally
assess the resulting performance of the combined methodology (interior scheme anc
ABCs of Section 4).

It is known that numerical dispersion for central-difference schemes is more visible |
more “suboptimal” Courant numbers. In other words, the further below the stability lirr
the Courant number is, the more dispersive the numerical waves become. In partict
it is easy to see that the one-dimensional second-order scheme (30b) is exact and si
reduces to pure propagation along the characteristics, when the Courant riginstesyual
to 1. Reducing this number will introduce dispersion of numerical waves. (Of course, 1
convergence of the scheme still implies that the phase shift for every given frequency \
become smaller as the grid sizes become smaller.) The analysis of the one-dimensional
alsoindicates thatin the multidimensional settings numerical dispersion is unavoidable. T
is easy to understand already from the following qualitative consideration: To guaran
stability for all the waves propagating at an angle with respect to the grid lines one ha:
choose a smaller Courant number, which will necessarily be suboptimal for those wa
that propagate along the grid lines.

Our intention now is to artificially increase the numerical dispersion inside the cor
putational domain and subsequently test the performance of the combined algorithm
do that, we gradually reduce the speed of soarid the direction from the peripheral
areas ofS(t) toward its center. As stability across the entire domain will still be lim-
ited by the maximum speed of sound, the corresponding Courant number near the |
ter will be suboptimal. This will imply higher levels of dispersion closer to the domai
center. This will also mean that any wave that originateS() will stay inside the do-
main longer compared to the previously analyzed cases of corst@he explanation is
obvious—the interior speed of propagation is lower. Consequently, we may expect t
every particular wave will accumulate more error before it leaves the do8tainNote,
we do not attempt to accurately quantify the aforementioned phenomena because this i
of the central interest for our current discussion. However, even on the level of qualitat
understanding of the mechanisms of numerical dispersion, itis certainly of interest to exy
imentally assess the performance of the scheme with the lacunae-based ABCs for the ce
variablec.
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For our computations, we have chosen the following law of variation of the speed
sound inside the computational dom&it),

(":2=02<1—P0~P(32>), (38)

wherec is the speed of sound in the far field,denotes the diameter of the computa-
tional domaing = const,f2 = r2 + (z — z(1))2, and the functiorP(.) is defined in Sec-
tion 3.5.2. The actual values of the parameters were taken exactly the same ashefbre,
d = 1.8, « = 0.8; the motion of the domain center is straightforward and uniform like i
Sections 3.5.2 and 5.%y(t) = kt, wherek = 0.2; the grid sizes, grid dimensions, con-
figuration of auxiliary domain, auxiliary boundary conditions (20), and parameters of t
temporal partition of unity are also the same as those defined in Section 3.5. The con:s
Po in expression (38) determines the extent of reduction of the speed of sound at the ce
of S(t). In our simulations, we have tried two specific valuBs:= 0.9 and P, = 0.99.
The reference exact solution that we used in the case of variable speed of sound i
same traveling-source solution (23b), (25) that we employed before. However, instea
Eqg. (19a) we are now solving

Pp (13 [ d¢ 8%p ~
— —(rz — ) =f(,z1t), t=>0, 39
12 C(rar <r8r>+822) *.z0 = (39)

whereg? is defined by (38). Substituting(r, z, t) of (25) into the left-hand side of Eq. (39)
we obtain the new source terfir, z, t) that will obviously differ from f (r, z, t) of (24)
that we used previously in Sections 3.5 and 5.1. This new source term is still compa
supported on the domaif(t) c R® for all times, and it now drives the solution (25) to
Eq. (39) subject to initial conditions (19b) on the entire space. We do not provide he
the explicit expression fof (r, z, t) because it is cumbersome, but the computation of th
new source term is straightforward. Concerning the methodology for setting the ABCs
remains exactly the same as that in Section 4. Indeed, we point out that the variation o
speed of sound pertains to the original interior problem only. And the auxiliary problem tt
we solve for the purpose of setting the ABCs is by definition formulated with the conste
speed of sound throughout its entire domain.

In Figs. 15—-17 we present the results of the grid convergence study for thBcase.9
(see formula (38)) on the same sequence of three grids that we used previousl|§¥284
128 x 256, and 256« 512. From Figs. 15 and 16 we conclude, as before, that the algorith
converges with the second-order for both schemes (26) and (27); and in Fig. 17 we a
observe the fourth-order convergence of scheme (28). The convergence obviously
not deteriorate as the time elapses, at least till dimensionless time reaches the mo
200- d/c when we stop the computation. This shows that similarly to the previous cas
of the constant speed of souocthe proposed numerical procedure in the case of variab
speed of sound is still capable of providing the solution of nondeteriorating quality. No
however, that as the original lacunae-based algorithm cannot be applied to the equation
variablec throughout the entire domain, we cannot directly compare in this case numeri
results obtained with the ABCs against those obtained with no ABCs as we did bef
(see, e.g., comparison of the results on Figs. 11 and 12 with those in Figs. 13 and
respectively, in Section 5.2). In other words, by looking at the error profiles in Figs. 1!
17 we cannot, generally speaking, say conclusively what part of it is due to the inter
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Variable speed of sound inside the computational domain

_4 T T T
LWV AWMV APMAAAARA ANV AW
_5 L i .
—— 64x128 grid
o——o 128x256 grid
*—* 256x512 grid

Ln[relative error]

0 50 100 150 200
dimensionless time

FIG. 15. Convergence of the solution to Egs. (39), (38) with the ABCs to the exact solution (2%) f910.9
using the second-order scheme (26).

truncation error and what part may be coming from the imperfections at the bounde
As such, in making a conclusion that the ABCs in this case perform practically as w
as they did in the previous cases, we rely on the experimental observation of tempor
uniform convergence, as well as on the fact that the actual error levels in Figs. 15-17
only slightly higher than the respective levels in Figs. 8-10. This is expected, beca
the results in Figs. 8-10 correspond to numerically reproducing the same exact solu
o(r, z, 1) given by (25) with the help of the ABCs of Section 4 but applying them to th
original constant—coefficient wave equation (19a) inside the do®@jras well.

Similar conclusions as to the convergence and quality of the numerical solution c
be drawn for the casé; = 0.99 from looking at Figs. 18-20. From the qualitative

Variable speed of sound inside the computational domain
_4 T T T

/W AANANAANAAN AN MMV ANANAAMANSAAANAANY

— 64x128 grid
6—o 128x256 grid
*——* 256x512 grid

Ln[relative error]

0 50 100 150 200
dimensionless time

FIG. 16. Same as Fig. 15 for the second-order scheme (27).
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Variable speed of sound inside the computational domain

-3.5 T T T

a5l — 64x128 grid |
) e—>o 128x256 grid

551 *——* 256x512 grid |
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FIG. 17. Same as Fig. 15 for the fourth-order scheme (28).

considerations above it follows that this case is supposed to be more difficult to comp
because the reduction in the speed of sound toward the cerér @ more significant. In
practice, this is manifested by noticeably more oscillatory error profiles, although we s
clearly see that there is no deterioration of the solution in the long run. Besides, the ac
levels of the error are somewhat higher compared to the corresponding curves in Figs. 15
This is also expected because the numerical dispersion i8éigles supposed to be higher.

5.4. Implementation Notes

The foregoing algorithm of lacunae-based ABCs has several parameters that need
tuned appropriately to obtain the best possible results. Most of the flexibility associated v

Variable speed of sound inside the computational domain
—2 T T T

—— 64x128 grid
-3r o——o 128x256 grid h
*—x* 256x512 grid

: A

Ln[relative error]
I
(9]
T
|

-8 1 1 ]
0 50 100 150 200

dimensionless time

FIG. 18. Convergence of the solution to Egs. (39), (38) to the exact solution (25%,fer 0.99 using the
second-order scheme (26).
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Variable speed of sound inside the computational domain

-2 T . .
—— 64x128 grid

-3 o—o 128x256 grid 1
*—* 256x512 grid

-4

Ln[relative error]

0 50 100 150 200
dimensionless time

FIG. 19. Same as Fig. 18 for the second-order scheme (27).

the algorithm resides in constructing the multipliers and artificial near-boundary sour
needed for computing the ABCs (Section 4), as well as in choosing the parameters of
lacunae-based integration (Section 3). We have not yet conducted a comprehensive ¢
of how the corresponding parameters affect the numerical procedure and as such, will «
outline here some general trends.

As mentioned before, the multiplier has to be smooth in the transition region; see Fig
and 7. Otherwise, lacunae of the continuous solution will not be reproduced sufficier
accurately in the discrete solution of the auxiliary problem (essentially because the sch
will lose consistency; see discussion at the end of Section 4.2). In most of our computati
we have used an algebraic polynomial function with four continuous derivatives for mul
plier, and the extent of the transition region was about 10 grid cells. This has always b

Variable speed of sound inside the computational domain

-3.5 T T T

_as5t —— 64x128 grid |
i o—=o 128x256 grid

55| *——* 256x512 grid |

Ln[relative error]
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0 50 100 150 200
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FIG. 20. Same as Fig. 18 for the fourth-order scheme (28).
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sufficient for the second-order schemes. In other words, we could always obtain the t
porally uniform second-order convergence with these settings, although we did not ch
for example, whether or not it was possible to further reduce the extent of the transit
region. As concerns the fourth-order convergence, we did see situations when the pi
ous settings turned out somewhat insufficient (e.g., in Section 5.2). This occurred mo
when going from the medium grid 128256 to the finest grid 256& 512. To maintain

the convergence rate in this case, we had to use a wider transition region (15 cells) ar
a smoother multiplier (five continuous derivatives). This indicates that in general the
gorithm of lacunae-based ABCs is sensitive to the smoothness of the multiplier, as |
supposed to be. However, this sensitivity does not actually manifest itself before the e
reaches sufficiently low levels. As such, in practical computing one will most likely be ak
to use rather narrow transition regions, as well as multipliers with limited smoothness.

With regard to choosing the parameters of the lacunae-based integration (see Sectic
there is at least one important observation that has been made experimentally. In theor
contribution of a given fragment of the RHS can be subtracted from the overall solution
soon as the time intervdl,; has elapsed since its inception. In practice, it has been fout
useful to introduce the so-called aft front time gap.e., allow a little extra time for the
waves to propagate outward. This implies choosing a somewhat larger value for the pe
Z compared to the necessary minimum given by (9) so that by the time of subtraction, wk
is Tint + 8 > Tint, the reflected waves will not have started reentering the do®@)ryet.
Moreover, we can choose to introduce the actual front time gap as well, i.e., incr&asin
even further, so that by the time of subtraction of a given contribution the correspond
reflected waves will still be at a (small) distance fr@t) rather than right next to its
boundary. Experimentally, we have found that the aft front time gap affects the quality
the solution more strongly than the actual front time gap. However, the quaimigll our
simulations was sufficiently small anyway, about 4%Tgf, and most likely it could be
reduced even further.

One important issue yet to be discussed is computational complexity of the propo
ABC algorithm. As mentioned before, the complexity of the original lacunae-based in
gration discussed in Section 3 is linear with respect to the grid dimension, provided t
the basis finite-difference scheme is explicit. We should emphasize that there are no hic
“preparatory” expenses that are not included in this estimate. The same linear comg
ity estimate will obviously extend to the case of the lacunae-based ABCs of Sectior
Compared to the naive time marching integration on the dorSdin (if it were possi-
ble without the ABCs), the overhead associated with the ABCs is directly proportional
the number of grid nodes in the exterior part of the auxiliary domain (i.e., oustgle The
corresponding proportionality coefficient is not large. It is determined by the stencil of t
corresponding finite-difference equations (26), (27), or (28) and should also account
the fact that the contribution of each element of the partition (11) has to be recompu
once on the exterior domain. We emphasize though that this overhead cannot be regarc
a pure penalty because the ABCs of Section 4 deliver a unique set of computational cap
ities (namely, reflection error below the truncation error and the nondeteriorating prope
for a variety of cases, including that of the accelerated motion) that simply could not he
been achieved if the problem @&(t) were integrated, e.g., with some local inexpensive
artificial boundary condition (see the review [2]).

We reiterate, however, that the key property of the lacunae-based ABCs of Section
not so much that the associated computational cost is proportional to the grid dimens
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but rather that it is fixed and bounded; i.e., it is not going to increase as the time elap:
Clearly, this property, delivered along with the superior accuracy of the numerical solutic
is crucial in the framework of long-term computations. We also stress that the ABCs h:
been specifically designed to handle continuously operating sources, and all numel
demonstrations of Section 5 were set up to experimentally corroborate their performa
in this case. There is, of course, a variety of cases that have not yet been included ir
scope of the proposed methodology. In particular, those are multiply connected dom:
and implicit time-stepping schemes. Both will be considered as a part of future researc

As concerns the actual CPU times required for computations reported in Sections 3.5
5, we can only provide rough estimates at this moment. Those times ranged from minute
hours to a day (the latter for the fourth-order scheme on the finest grid, which required ak
250, 000 time steps) on a single-processor DEC Alpha EV6 500 MHz desktop workstati
running a Digital UNIX, version 4.0E, operating system. We should mention, however, tt
at a later stage of development of the ABC algorithm, which would be closer to producti
computations, it will certainly make sense to report the precise CPU times along with
theoretical asymptotic estimates of complexity with respect to the grid dimension. At t
current proof-of-the-concept stage, we are not doing that for the following reasons. F
and foremost, our current goal was to design the algorithm and experimentally demonst
its fundamental properties, with the emphasis on the high accuracy (at least as good as
of the interior discretization) and nondeteriorating long-term behavior with nonincreasi
costs, rather than to try and obtain maximum a numerical speed for any given computat
As such, the codes that we have used were not optimized for performance in any resj
and the corresponding CPU times (see above) are by far not the best possible, and ther
not representative. Moreover, a direct comparison of execution times with other results
the wave equation available in the literature would, at the current stage, be problem
at best for the obvious reasons of platform, software, and implementation depende
Finally, any comprehensive comparison, even if it is performed on the same platform, €
should address not only the CPU time, but also the overall balance between the accu
and universality of a given technique, and the speed of numerical computation (see
review [2]). By now, we have been able to show that the capabilities of the proposed AB
are in many respects unigue (no reflection beyond the level of the interior truncation er
applicability to the case of accelerated motion), and the quest for the actual numer
performance will be one of our future tasks as well.

6. CONCLUSIONS

We have constructed and tested the algorithm for setting highly accurate global ar
cial boundary conditions in the problems of time-dependent wave propagation. The |
building block of the new ABCs is a special nondeteriorating numerical procedure tt
has been developed previously for the long-term integration of wave-radiation probler
The latter procedure is based on the presence of lacunae (aft fronts of the waves) ir
three-dimensional wave-type solutions. The resulting lacunae-based ABCs are obta
directly for the discrete formulation of the problem and can complement any consist
and stable finite-difference scheme. Doing so requires neither a rational approximatiol
nonreflecting kernels nor discretization of the continuous boundary conditions is requir
The extent of temporal nonlocality of the new ABCs appears fixed and limited, and t



GLOBAL ABCs FOR WAVE PROPAGATION 757

is not a result of any approximation but rather a direct consequence of the fundame
properties of the solution. The proposed ABCs can handle artificial boundaries of irregt
shape on regular grids with no fitting/adaptation needed. Besides, they possess a ut
capability of being able to handle boundaries of moving computational domains, inclt
ing the case of accelerated motion. We have conducted a series of numerical experir
that would corroborate the theoretical design properties of the algorithm. The experime
included computation of unsteady wave-radiation solutions over long time intervals. In
our experiments the ABCs could always keep the level of reflections from the artific
boundary on or below the level of truncation error for the interior discretization for as lol
as the computation was run. Besides the classical wave equation that we have analyz
this paper, the proposed technique may find applications in computational acoustics
computational electromagnetics.
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